ARTESYN AVO100-48S05 SERIES

100 Watts 1/8 Brick Converter

PRODUCT DESCRIPTION

Advanced Energy's Artesyn AVO100-48S05 series is a single output DC/DC converter with standard eighth-brick form factor and pin configuration. It delivers up to 20A output current with 5V output. Ultra-high efficiency 92.8% efficiency and excellent thermal performance makes it an ideal choice for use in telecom applications. It can operate over an ambient temperature range of -40°C to +85°C.

AT A GLANCE

Total Power

100 Watts

Input Voltage

36 to 75 Vdc

of Outputs

Single

SPECIAL FEATURES

- Delivering up to 20A output
- Ultra-high efficiency 92.8% typ. at full load
- Wide input range: 36 to 75Vdc
- Pre-bias function
- Excellent thermal performance
- No minimum load requirement
- Fixed frequency operation
- Intended for wave soldering
- RoHS 3.0 compliant
- Remote control function
- Remote output sense
- Trim function: 80% ~ 110%
- Input under voltage lockout
- Output over current protection
- Output over voltage protection

- Over temperature protection
- Industry standard eighth-brick pinout outline
- Pin length:3.8mm

SAFETY

- IEC/EN/UL/ 60950-1
- UL/TUV
- GB4943
- CE and UKCA Mark

TYPICAL APPLICATIONS

- Datacom
- Telecommunication

MODEL NUMBERS

Standard	Output Voltage	Structure	Remote ON/OFF logic	RoHS Status
AVO100-48S05-6L	5Vdc	Open-frame	Negative	3.0
AVO100-48S05P-6L	5Vdc	Open-frame	Positive	3.0
AVO100-48S05B-6L	5Vdc	Baseplate	Negative	3.0
AVO100-48S05PB-6L	5Vdc	Baseplate	Positive	3.0
AVO100-48S05SL-6L	5Vdc	SMT, Open-frame	Negative	3.0

Order Information

AVO100	-	48	S	05	Р	В	-	6	L
1		2	3	4	(5)	6		7	8

1)	Model series	AVO: Standard eighth-brick series, 100: output power 100W
2	Input voltage	48: 36V ~ 75V input range, rated input voltage 48V
3	Output number	S: single output
4	Rated output voltage	05: 5V output
(5)	Remote ON/OFF logic	Default: negative logic; P: positive logic
6	Baseplate	B: with baseplate; default: open-frame; S: SMT pin; T: SMT pin and tape reel package
7	Pin length	6: 3.8mm pin length
8	RoHS status	L: RoHS 3.0

Options

None

Absolute Maximum Ratings

Stress in excess of those listed in the "Absolute Maximum Ratings" may cause permanent damage to the power supply. These are stress ratings only and functional operation of the unit is not implied at these or any other conditions above those given in the operational sections of this TRN. Exposure to any absolute maximum rated condition for extended periods may adversely affect the power supply's reliability.

Table 1. Absolute Maximum Ratings	Table 1. Absolute Maximum Ratings					
Parameter	Model	Symbol	Min	Тур	Max	Unit
Input Voltage Operating -Continuous Non-operating -100mS	All All	V _{IN,DC}	-		80 100	Vdc Vdc
Maximum Output Power	All	P _{O,max}	-	-	100	W
Isolation Voltage ¹ Input to outputs	All		-	-	2250	Vdc
Ambient Operating Temperature	All	T _A	-40	-	+85	°C
Storage Temperature	All	T _{STG}	-55	-	+125	°C
Voltage at remote ON/OFF pin	All		-0.7	-	12	Vdc
Humidity (non-condensing) Operating Non-operating	AII AII			- -	95 95	% %

Note 1 - 1mA for 60s, slew rate of 2000V/10s.

3

Input Specifications

Table 2. Input Specifications						
Parameter	Condition ¹	Symbol	Min	Тур	Max	Unit
Operating Input Voltage, DC	All	$V_{\rm IN,DC}$	36	48	75	Vdc
Turn-on Voltage Threshold	$I_{O} = I_{O,max}$	V _{IN,ON}	31	34	36	Vdc
Turn-off Voltage Threshold	$I_{O} = I_{O,max}$	V _{IN,OFF}	30	32	35	Vdc
Lockout Voltage Hysteresis	$I_{O} = I_{O,max}$		1	2	3	V
Maximum Input Current $(I_O = I_{O,max})$	V _{IN,DC} = 36V _{DC}	I _{IN,max}	-	-	3.5	А
No Load Input Current (V _O On, I _O = 0A, I _{VSB} = 0A)	V _{IN,DC} = 36V _{DC}	I _{IN,no_load}	-	0.05	0.1	А
Standby Input Current	$V_{IN,DC} = 36V_{DC}$	I _{IN,standby}	-	0.01	0.03	А
Inrush Current Transient Rating			-	0.5	1	A ² S
Recommended Input Fuse	Fast blow external fuse recommended		-	-	10	А
Recommended External Input Capacitance	Low ESR capacitor recommended	C _{IN}	-	100	-	uF
Input Reflected Ripple Current	Through 12uH inductor			15	-	mA
Input filter component values (C\L)	Internal values		-	4.4\3.0	-	μF\μH
Operating Efficiency	$T_A = 25$ °C $I_O = I_{O,max}$ $I_O = 60I_{O,max}$	η	-	92.8 92.4	-	%

Note 1 - Ta = 25 °C, airflow rate = 400 LFM, Vin = 48Vdc, nominal Vout unless otherwise noted.

Output Specifications

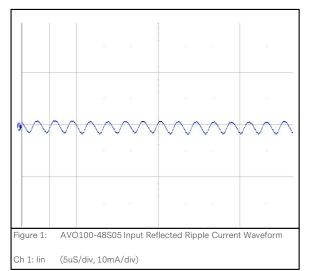
Parameter		Condition ¹	Symbol	Min	Тур	Max	Unit
r arameter			Syllibol	IVIIII	Тур	IVIAX	Unit
Factory Set Voltage		$V_{IN,DC} = 48V_{DC}$ $I_{O} = I_{O,max}$	V _O	4.93	5.00	5.07	Vdc
Total Regulation		Inclusive of line, load temperature change, warm-up drift	Vo	4.85	5.00	5.15	Vdc
Output Voltage Line Regula	ation	All	%V _o	-	0.1	0.2	%
Output Voltage Load Regu	ation	All	%V _o	-	0.2	0.5	%
Output Voltage Temperatu	re Regulation	All	%V _o	-	-	0.02	%/°C
Output Voltage Trim Range	9	All	V _O	4	-	5.5	V
Output Ripple, pk-pk		Measure with a 1uF ceramic capacitor in parallel with a 10uF tantalum capacitor, 0 to 20MHz bandwidth	Vo	-	40	90	mV _{PK-PK}
Output Current		All	Io	0	-	20	А
Output DC current-limit inception ²			Io	22	-	32	А
V _O Load Capacitance ³		All	Co	220	1000	10000	uF
V _O Dynamic Response		50%~75%~50% 25% load change slew rate = 0.1A/us	±V _O T _s	-	80 100		mV uSec
	Peak Deviation Settling Time	50%~75%~50% 25% load change slew rate = 1A/us	±V _O T _s	-	230 100	- -	mV uSec
	Rise time	$I_{O} = I_{max}$	T _{rise}	-	5	30	mS
Turn-on transient	Turn-on delay time	$I_{O} = I_{max}$	T _{turn-on}	-	3	30	mS
	Output voltage overshoot	I _O = 0	%V _o	-	0	-	%
Switching frequency		All	f _{SW}	280	310	360	KHz
Remote ON/OFF control (Positive logic)	Off-state voltage	All		-0.7	-	1.2	V
	On-state voltage	All		3.5	-	12	V
Remote ON/OFF control	Off-state voltage	All		3.5	-	12	V
(Negative logic)	On-state voltage	All		-0.7	-	1.2	V

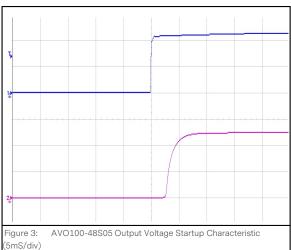
Note 1 - Ta = 25 $^{\circ}$ C, airflow rate = 400 LFM, Vin = 48Vdc, nominal Vout unless otherwise noted.

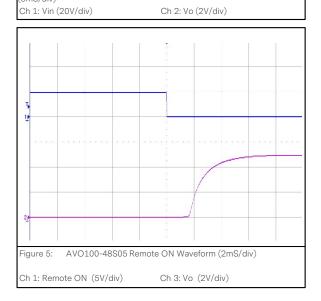
Note 2 - Hiccup: auto-restart when over-current condition is removed.

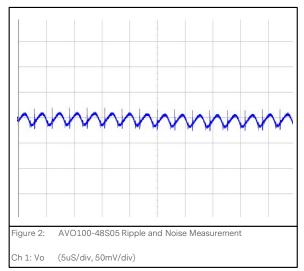
Note 3 - High frequency and low ESR is recommended.

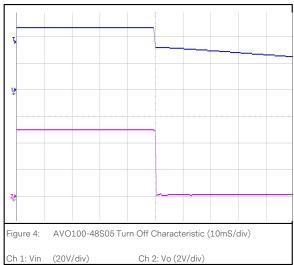
Output Specifications

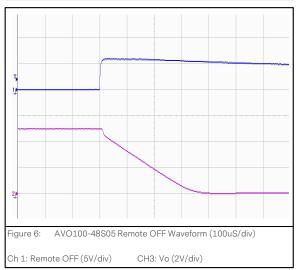

Table 3. Output Specifications, con't:						
Parameter	Condition ¹	Symbol	Min	Тур	Max	Unit
Output over-voltage protection ⁴	All	%V _O	115	-	140	%
Output over-temperature protection ⁵ With baseplate Without baseplate	All All	T T	-	123 130	- -	°C °C
Over-temperature hysteresis	All	Т	5	-	-	οС
Output voltage remote sense range	All	Vo	-	-	0.5	V
MTBF	Telcordia SR-332-2006; 80% load, 300LFM, 40 °C T _A		-	1.5	-	10 ⁶ h


Note $\bf 4$ - Hiccup: auto-restart when over-voltage condition is removed.


Note 5 - Auto recovery. See Figure 10,11 test point.




AVO100-48S05 Performance Curves



Rev.03.17.22_#1.3 advancedenergy.com

AVO250-48S28 Performance Curves

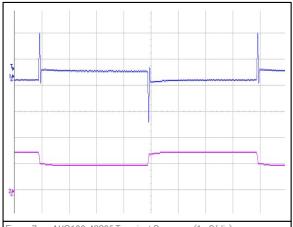


Figure 7: AVO100-48S05 Transient Response (1mS/div) 50%~75%~50% load change, 0.1A/uS slew rate, Vin = 48Vdc Ch 1: Vo (50mV/div) Ch 3: lo (10A/div)

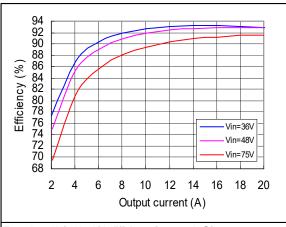
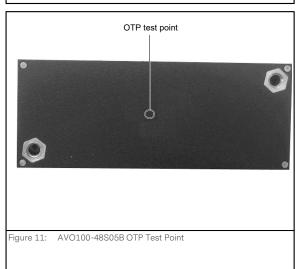



Figure 9: AVO100-48S05 Efficiency Curves @ 25 °C

Loading: Io = 10% increment to 20A

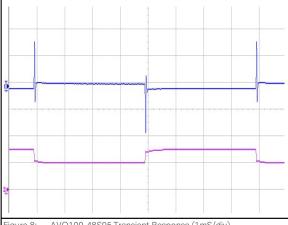
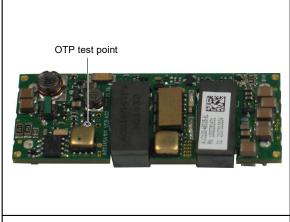
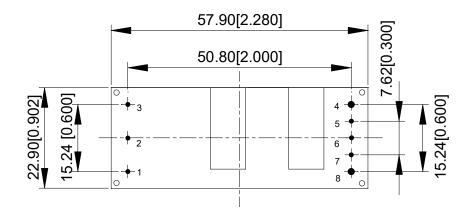
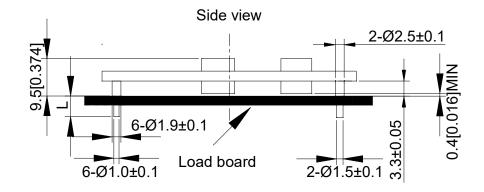


Figure 8: AVO100-48S05 Transient Response (1mS/div)
50%~75%~50% load change, 1A/uS slew rate, Vin = 48Vdc
Ch 1: Vo (100mV/div) Ch 3: Io (10A/div)



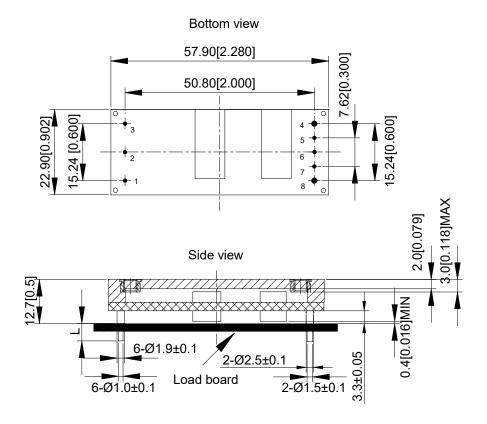

Figure 10: AVO100-48S05 OTP Test Point

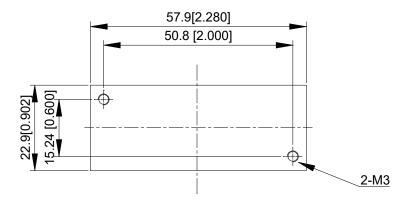


Mechanical Outlines - Open-Frame Module (mm)

AVO100-48S05

Bottom view


Unit: mm [inch] Bottom view: pin on upside

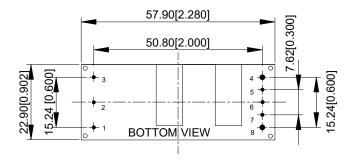

Tolerance: X.Xmm \pm 0.5mm [X.X in. \pm 0.02in.] X.XXmm \pm 0.25mm [X.XX in. \pm 0.01in.]

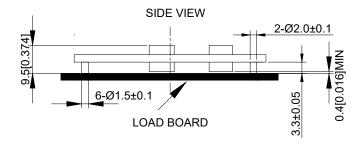
Mechanical Outlines - Baseplate Module (mm)

AVO100-48S05B

Unit: mm [inch] Bottom view: pin on upside

Tolerance: X.Xmm \pm 0.5mm [X.X in. \pm 0.02in.] X.XX mm \pm 0.25mm [X.XX in. \pm 0.01in.]

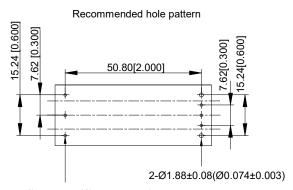

Note: Depth penetration into base plate, of M3 screws used at baseplate mounting holes, not to exceed maximum of 3.0mm.



10

Mechanical Outlines - SMT Module (mm)

AVO100-48S05SL



UNIT: mm[inch] BOTTOM VIEW: pin on upside

$$\begin{split} \text{TOLERANCE: X.Xmm} &\pm 0.5 \text{mm} [\text{X.X in.} \pm 0.02 \text{in.}] \\ &\quad \text{X.XXmm} \pm 0.25 \text{mm} [\text{X.XX in.} \pm 0.01 \text{in.}] \end{split}$$

Recommended Hole Pattern

Through hole with diameter 1.37mm (0.054 inch) is recommended for pin1, pin2, pin3, pin5, pin6 and pin7 soldering. Through hole with diameter 1.88mm (0.074 inch) is for pin4 and pin8.

6-Ø1.37±0.08(Ø0.054±0.003)

Unit: mm[inch]

Pin Designations

Pin No	Name	Function
1	Vin+	Positive input voltage
2	Remote On/Off	Remote control
3	Vin-	Negative input voltage
4	Vo-	Negative output voltage
5	S-	Negative remote sense
6	Trim	Output voltage trim
7	S+	Positive remote sense
8	Vo+	Positive output voltage

Pin Size

Device code suffix	Pin size
-4	4.8mm±0.25mm
-6	3.8mm±0.25mm
-8	2.8mm±0.25mm
None	5.8mm±0.25mm

EMC Immunity

AVO250-48S28 series power supply is designed to meet the following EMC immunity specifications.

Table 4. Environmental Specifications	Table 4. Environmental Specifications				
Document Description		Criteria			
EN55022, Class A Limits	Conducted and Radiated EMI Limits	/			
IEC/EN 61000-4-2, Level 3	Electromagnetic Compatibility (EMC) - Testing and measurement techniques - Electrostatic discharge immunity test. Enclosure Port	В			
IEC/EN 61000-4-6, Level 2	Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Continuous Conducted Interference. DC input port	В			
IEC/EN 61000-4-4, Level3	Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Electrical Fast Transient. DC input port.	В			
IEC/EN 61000-4-5	Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Immunity to surges - 600V common mode and 600V differential mode for DC ports	А			
EN61000-4-29	Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Voltage Dips and short interruptions and voltage variations. DC input port	В			

Criterion A: Normal performance during and after test.

Criterion B: For EFT and surges, low-voltage protection or reset is not allowed. Temporary output voltage fluctuation ceases after disturbances ceases, and from which the EUT recovers its normal performance automatically. For Dips and ESD, output voltage fluctuation or reset is allowed during the test, but recovers to its normal performance automatically after the disturbance ceases.

Recommend EMC Filter Configuration

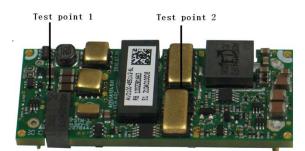
See figure 18

13

Safety Certifications

The AVO250-48S28 series module is intended for inclusion in other equipment and the installer must ensure that it is in compliance with all the requirements of the end application. This product is only for inclusion by professional installers within other equipment and must not be operated as a stand alone product.

Table 5. Safety Certifications for AVO100-48S05 series module			
Standard	Agency	Description	
UL/CSA 60950	UL+CUL	US and Canada Requirements	
EN60950	TUV	European Requirements	
IEC60950		European Requirements	
GB4943		China Requirements	
CE	CE	CE Marking	
UKCA	UKCA	UK Requirements	


Operating Temperature

The AVO100 series power supplies will start and operate within stated specifications at an ambient temperature from -40 $^{\circ}$ C to 85 $^{\circ}$ C under all load conditions. The storage temperature is -55 $^{\circ}$ C to 125 $^{\circ}$ C.

Thermal Considerations - Open-Frame module

The converter is designed to operate in different thermal environments and sufficient cooling must be provided. Proper cooling can be verified by measuring the temperature at the test points as shown in the figure 10. The temperature at these test points should not exceed the maximum values in Table 7.

For a typical application, forced airflow direction is from Vin- to Vin+, Figure 12 shows the derating of output current vs. ambient air temperature at different air velocity.

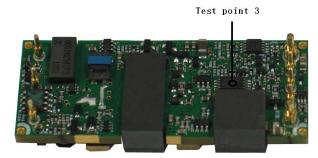


Figure 10: Temperature test point

Table 6. Temperature limit of the test point			
Test Point	Temperature Limit		
Test point 1	124 °C		
Test point 2	130 °C		
Test point 3	118 °C		

15

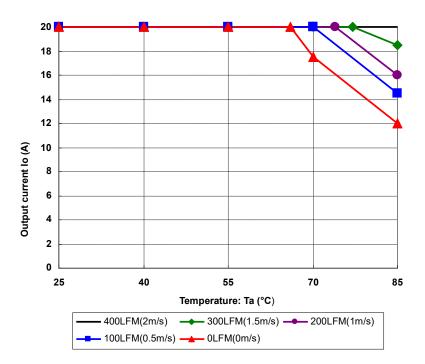


Figure 12: Derating curve

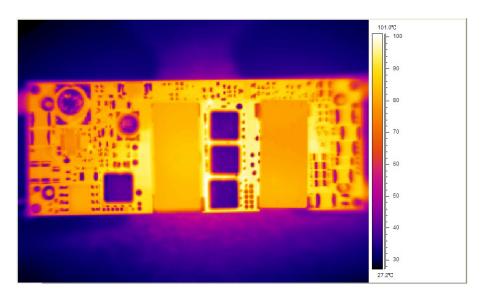


Figure 13: Thermal image, $48V_{in,}5V_{o}$, full load, room temperature, 100LFM (air flowing from pin 1 to pin 3)

Thermal Considerations -Baseplate module

The cooling can be verified by measuring the temperature at the test points. The temperature at these points should not exceed the maximum values in Table 8.

For a typical application converter is designed to operate in different thermal environments and sufficient cooling must be provided. Proper, forced airflow direction is from Vin- to Vin+, Figure 15 shows the derating of output current vs. ambient air temperature at different air velocity.

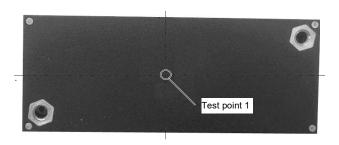
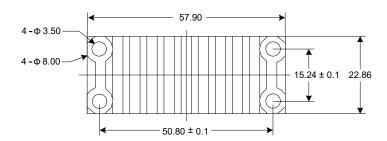



Figure 14: Temperature test point

Table 7. Temperature limit of the test point			
Test Point	Temperature Limit		
Test point 1	116 °C		
Test point 2	118 °C		

The converter can also operate with a smaller heatsink and sufficient airflow. The heatsink is shown in Figure 15.

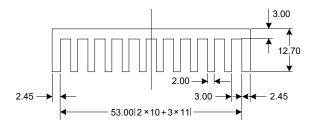


Figure 15: Heatsink (Unit:mm)

Figure 16 shows the derating output current vs. ambient air temperature at different air velocity with a heatsink, the heatsink specification is shown in Figure 15. The typical test condition is shown in Figure 17.

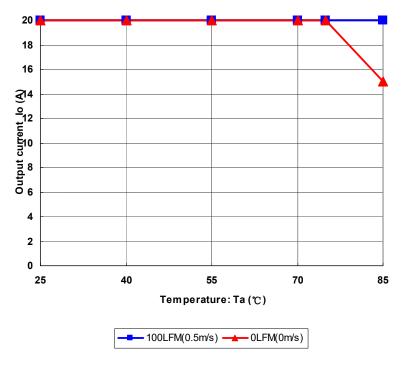


Figure 16: Derating curve

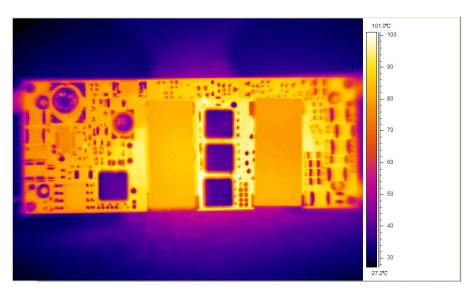


Figure 17: Thermal image, $48V_{in,}5V_{o}$, full load, room temperature, 100LFM (air flowing from pin 1 to pin 3)

18

Qualification Testing

Parameter	Unit (pcs)	Test condition	
Halt test	4-5	$T_{a,min}$ -10 °C to $T_{a,max}$ +10 °C, 5 °C step, V_{in} = min to max, 0 ~ 105% load	
Vibration	3	Frequency range: 5Hz ~ 20Hz, 20Hz ~ 200Hz, A.S.D: 1.0m²/s³, -3db/oct, axes of vibration: X/Y/Z. Time: 30min/axis	
Mechanical Shock	3	30g, 6ms, 3axes, 6directions, 3time/direction	
Thermal Shock	3	-40 °C to 100 °C, unit temperature 20cycles	
Thermal Cycling	3	-40 °C to 55 °C, temperature change rate: 1°C/min, cycles: 2cycles	
Humidity	3	40 °C, 95%RH, 48h	
Solder Ability	15	IPC J-STD-002C-2007	

Typical Application

Below is the typical application of the AVO100-48S05 series power supply.

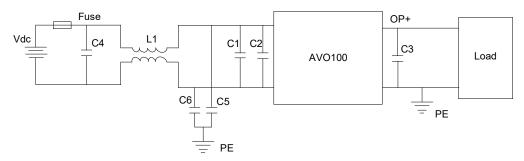


Figure 18: Typical application

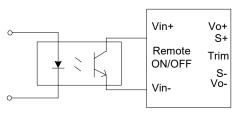
Recommended input fuse: LITTLEFUSE 216010.P 10A

C4: SMD ceramic-100V-1000nF-X7R-1210

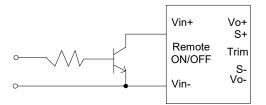
C1: SMD ceramic-100V-100nF- \pm 10%-X7R-1206

C2: $100\mu\text{F}/100\text{V}$ electrolytic capacitor, high frequency and low ESR

C3: $1000\mu F/10V$ electrolytic capacitor, high frequency and low ESR


C5, C6: SMD ceramic-22nF/1000V/X7R-1210


L1: $1320 \text{uH} - \pm 25\% - 4\text{A} - \text{R5K} - 21 \times 21 \times 12.5 \text{mm}$



Remote ON/OFF

Negative remote ON/OFF logic is available in AVO100-48S05. Below is the detailed external circuit in AVO100-48S05.

Non-isolated remote ON/OFF circuit

Figure 19: External Remote ON/OFF circuit

Trim Characteristics

Connecting an external resistor between Trim pin and Vo- pin will decrease the output voltage. While connecting it between Trim and Vo+ will increase the output voltage. The following equations determine the external resistance to obtain the trimmed output

$$R_{adj-down} = \frac{510}{\Delta} - 10.2(K\Omega)$$

$$R_{adj-up} = \frac{5.1 \times V_{nom} \times \left(100 + \Delta\right)}{1.225 \times \Delta} - \frac{510}{\Delta} - 10.2(K\Omega)$$

△:Output e rate against nominal output voltage.

$$\Delta = \frac{100 \times (V_{nom} - V_0)}{V_{nom}}$$
 V_nom: Nominal output voltage.

For example, to get 5.5V output, the trimming resistor is

$$R_{adj-up} = \frac{5.1 \times 5 \times \left(100 + 10\right)}{1.225 \times 10} - \frac{510}{10} - 10.2 = 167.78(K\Omega)$$

The output voltage can also be trimmed by potential applied at the Trim pin

$$V_O = \frac{(V_{trim} + 1.225) \times V_{norm}}{2.45}$$

Where V_{trim} is the potential applied at the Trim pin, and V_o is the desired output voltage. When trimming up, the output current should be decreased accordingly so as not to exceed the maximum output power.

Internal side

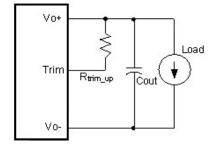


Figure 20: Trim up

Internal side

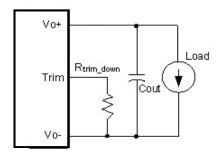


Figure 21: Trim down

Input Ripple & Inrush Current and Output Ripple & Noise Test Configuration

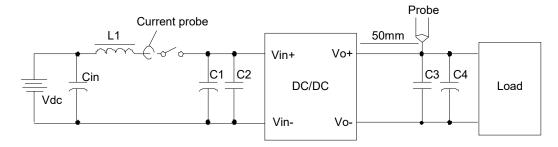


Figure 22: Input ripple & inrush current output ripple & noise test configuration

Vdc: DC power supply

L1: 12uH

Cin: 220uF/100V typical

C1: SMDceramic-100V-100nF- \pm 10%-X7R-1206

C2: 100µF/100V electrolytic capacitor, high frequency and low ESR

C3: SMDceramic-10V-1 μ F- \pm 10%-X7R-1206

C4: $1000\mu\text{F}/10\text{V}$ electrolytic capacitor, high frequency and low ESR

Note - Using a coaxial cable with series 50ohm resistor and 0.68uF ceramic capacitor or a ground ring of probe to test output ripple & noise is recommended

Sense Characteristics

If the load is far from the unit, connect S+ and S- to the terminals of the load respectively to compensate the voltage drop on the transmission line.

If the sense compensation function is not necessary, connect S+ to Vo+ and S- to Vo- respectively.

Soldering

R6 Wave Soldering

The product is intended for standard manual, or wave soldering.

When wave soldering is used, the temperature on pins is specified to maximum 260 °C for maximum 7s.

When soldering by hand, the iron temperature should be maintained at 300 $^{\circ}$ C $^{\circ}$ C and applied to the converter pins for less than 10s. Longer exposure can cause internal damage to the converter.

Cleaning of solder joint can be performed with cleaning solvent IPA or simulative.

Design Of Surface Mount Solder

The diameter of pin: 1.5mm (small), 2.0mm (big) SMD solder pad: 2.0mm (small), 2.5mm (big)

The soldermask: 5 mil bigger than the SMD solder pad SMD solder pad copper: 3.0mm (small), 3.5mm (big)

The solder paste: 3.0mm (small), 3.5mm (big)

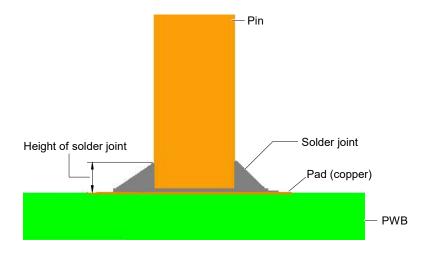


Figure 23: Surface mount solder design

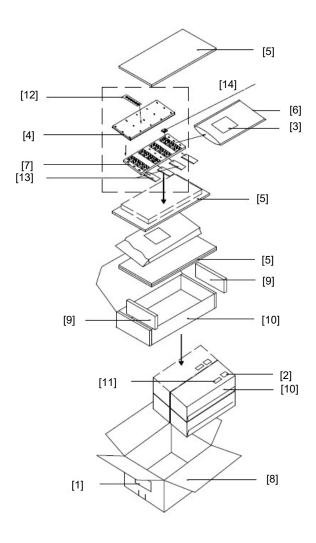
Package Information

Package type

moisture sensitivity level 3, moisture barrier bags.

Minimal package QTY 128 pcs.

Package disassembly



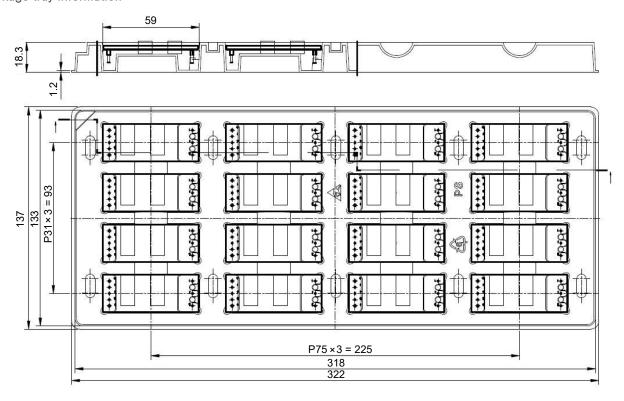

Figure 24: Package disassembly

Table 8. Assemblies description

No.	Description
1	Shipping label
2	Moistureproof identification label
3	Moistureproof caution label
4	Tray cover
5	Anti-static PE foam 1
6	Moisture barrier bag
7	Tray
8	Shipping carton
9	Anti-static PE foam 2
10	Inner box
11	Model barcode label
12	Humidity indicating card
13	Desiccant
14	Model

Package tray information

RECORD OF REVISION AND CHANGES

Issue	Date	Description	Originators
1.0	07.10.2014	First issue	K. Wang
1.1	10.17.2014	Update format on page 5	K. Wang
1.2	12.16.2019	Update the soldering spec	J. Ma
1.3	03.17.2022	Update UKCA mark	E. Wang

ABOUT ADVANCED ENERGY

Advanced Energy (AE) has devoted more than three decades to perfecting power for its global customers. AE designs and manufactures highly engineered, precision power conversion, measurement and control solutions for mission-critical applications and processes.

Our products enable customer innovation in complex applications for a wide range of industries including semiconductor equipment, industrial, manufacturing, telecommunications, data center computing, and medical. With deep applications know-how and responsive service and support across the globe, we build collaborative partnerships to meet rapid technological developments, propel growth for our customers, and innovate the future of power.

PRECISION | POWER | PERFORMANCE

For international contact information, visit advancedenergy.com.

Advanced Energy

powersales@aei.com(Sales Support) productsupport.ep@aei.com(Technical Support) +1 888 412 7832 Specifications are subject to change without notice. Not responsible for errors or omissions. ©2020 Advanced Energy Industries, Inc. All rights reserved. Advanced Energy®, and AE® are U.S. trademarks of Advanced Energy Industries, Inc.