AXA 20W Series

20 Watts

DC/DC Converter

Total Power: 20 Watts **Input Voltage:** 9 to 36 Vdc

18 to 75 Vdc

of Outputs: Single /Dual

Special Features

- Package size 1.0" x 1.0" x 0.4"
- Ultra-wide 4:1 input range:
- 9 36 Vin, 18 75 Vin
- Very high efficiency up to 89%
- Operating temperature range:
- -40 °C to +85 °C
- Output voltage adjustable
- I/O isolation voltage 1500VDC
- Remote ON/OFF control
- Shielded metal case with isolated baseplate
- CSA/UL/IEC/EN 60950-1
- · Safety Approval

Safety

cUL/UL/CSA 60950-1 IEC/EN 60950-1

Product Descriptions

The AXA 20W series is a new generation of high performance dc-dc converter modules setting a new standard concerning power density. The product offers fully 20W in a shielded metal package with dimensions of just 1.0"x1.0"x 0.4". All models provide ultra-wide 4:1 input voltage range and tight output voltage regulation.

State-of the-art circuit topology provides a very high efficiency up to 89% which allows an operating temperature range of -40 °C to +85 °C. Further features include remote On/Off, trimmable output voltage as well as overload protection and over-temperature protection.

Typical applications for these converters are battery operated equipment, instrumentation, distributed power architectures in communication and industrial electronics and other space critical applications

Model Numbers

Model	Input Voltage	Output Voltage	Maximum Load	Efficiency
AXA04F18-L	9-36Vdc	3.3V	4.5A	87%
AXA04A18-L	9-36Vdc	5V	4A	89%
AXA01B18-L	9-36Vdc	12V	1.67A	89%
AXA01C18-L	9-36Vdc	15V	1.33A	89%
AXA00H18-L	9-36Vdc	24V	0.835A	88%
AXA00BB18-L	9-36Vdc	±12V	±0.835 A	89%
AXA00CC18-L	9-36Vdc	±15 V	±0.67 A	89%
AXA04F36-L	18-75 Vdc	3.3V	4.5A	88%
AXA04A36-L	18-75 Vdc	5V	4A	89%
AXA01B36-L	18-75 Vdc	12V	1.67A	89%
AXA01C36-L	18-75 Vdc	15V	1.33A	89%
AXA00H36-L	18-75 Vdc	24V	0.835A	88%
AXA00BB36-L	18-75 Vdc	±12 V	±0.835 A	89%
AXA00CC36-L	18-75 Vdc	±15 V	±0.67 A	89%

Options

Heatsink (-HS)

Electrical Specifications

Absolute Maximum Ratings

Stress in excess of those listed in the "Absolute Maximum Ratings" may cause permanent damage to the power supply. These are stress ratings only and functional operation of the unit is not implied at these or any other conditions above those given in the operational sections of this TRN. Exposure to any absolute maximum rated condition for extended periods may adversely affect the power supply's reliability.

Table 1. Absolute Maximum Ratings:

Parameter	Model	Symbol	Min	Тур	Max	Unit
Input Voltage Operating -Continuous	24V input Models 48V input Models	V _{IN,DC}	9 18	-	36 75	Vdc Vdc
Maximum Output Power	All models	P _{O,max}	-	-	20	W
Isolation Voltage Input to output	All models		1500	-	-	Vdc
Isolation Resistance 500Vdc	All models		1000	-	-	Mohm
Isolation Capacitance 100KHz, 1V	All models		-	-	1500	pF
Operating Ambient Temperature	All models		-40	-	+85	°С
Operating Case Temperature	All models	T _{CASE}	-40	-	+105	°C
Storage Temperature	All models	T _{STG}	-50	-	+125	°C
Humidity (non-condensing) Operating Non-operating	All models All models		-		95 95	% %
MTBF	MIL-STD-217F, TA =+25 ^o C,Ground Benign		-	451,600	-	Khours

Input Specifications

Table 2. Input Specifications:

Parameter		Condition	Symbol	Min	Nom	Max	Unit
Operating Input Voltage, DC	24V Input Models 48V Input Models	All	V _{IN,DC}	9 18	24 48	36 75	Vdc
Start-up Threshold Voltage	24V Input Models 48V Input Models	All	V _{IN,ON}	-		9 18	Vdc
Input Surge Voltage	24V Input Models 48V Input Models	1 sec, max	V _{IN,surge}	-0.7 -0.7	- -	50 100	Vdc
Input reflected ripple current	24V Input Models 48V Input Models	5 to 20MHz,12uH source impedance	I _{IN,ripple}	-	50 30	-	mA
Input Current	AXA04F18-L AXA04A18-L AXA01B18-L AXA01C18-L AXA00BB18-L AXA00CC18-L AXA04F36-L AXA04F36-L AXA01B36-L AXA01C36-L AXA01C36-L AXA00BB36-L AXA00CC36-L	$V_{IN,DC}=V_{IN,nom}$	I _{IN,full} load		711 936 938 941 949 938 941 352 468 469 471 474 469 471		mA
No Load Input Current (V _O On, I _O = 0A)	AXA04F18-L AXA04A18-L AXA01B18-L AXA01C18-L AXA00H18-L AXA00BB18-L AXA00CC18-L AXA04F36-L AXA04A36-L AXA01B36-L AXA01C36-L AXA00H36-L AXA00BB36-L AXA00CC36-L	$V_{IN,DC}=V_{IN,nom}$	I _{IN,no_} load	-	80 90 40 40 40 40 40 45 25 25 25 25	-	mA

Input Specifications

Table 2. Input Specifications con't:

Parameter		Condition	Symbol	Min	Nom	Max	Unit
Efficiency @Max. Load	AXA04F18-L AXA04A18-L AXA01B18-L AXA01C18-L AXA00H18-L AXA00BB18-L AXA00CC18-L AXA04F36-L AXA04A36-L AXA01B36-L AXA01C36-L AXA00H36-L AXA00BB36-L AXA00CC36-L	$V_{IN,DC} = V_{IN,nom}$ $I_O = I_{O,max}$ $T_A = 25 ^{\circ}C$	η	- - - - - - - - - -	87 89 89 88 89 89 88 89 89 88	- - - - - - - - - -	%
Start Up Time	Power Up	V _{IN,DC=} V _{IN,nom} Constant Resistive Load		-	_	30	mS
Start Op Tille	Remote On/Off			-	-	30	1113
Remote On/OFF Control		Remote ON Remote OFF		3.5 0	- -	12 1.2	Vdc
Remote Off Stand by Input Current		All				10	mA
Input Current of Remote Control Pin		All				0.5	mA
Internal Filter Type		Internal LC Filter (for EN55022,Class A/ and FCC level Compliance)					

Output Specifications

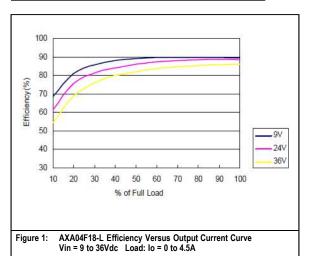
Table 3. Output Specifications:

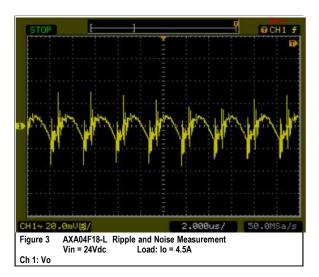
Parameter		Condition	Symbol	Min	Nom	Max	Unit
Output Voltage Set- Point	AXA04F18-L AXA04A18-L AXA01B18-L AXA01C18-L AXA00H18-L AXA00BB18-L AXA00CC18-L AXA04F36-L AXA04A36-L AXA01B36-L AXA01C36-L AXA00BB36-L AXA00BB36-L AXA00CC36-L	V _{IN,DC=} V _{IN,nom} I _O =I _O ,max T _A =25 °C	Vo	3.27 4.95 11.88 14.85 23.76 ±11.88 ±14.85 3.27 4.95 11.88 14.85 23.76 ±11.88 ±14.85	3.3 5 12 15 24 ±12 ±15 3.3 5 12 15 24 ±12 ±15	3.33 5.05 12.12 15.15 24.24 ±12.12 ±15.15 3.33 5.05 12.12 15.15 24.24 ±12.12 ±15.15	Vdc
Output Current	AXA04F18-L AXA04A18-L AXA01B18-L AXA01C18-L AXA00H18-L AXA00BB18-L AXA00CC18-L AXA04F36-L AXA04A36-L AXA01B36-L AXA01C36-L AXA00BB36-L AXA00BB36-L AXA00CC36-L	Convection cooling	I _o	- - - - - - - - - -	- - - - - - - - - -	$\begin{array}{c} 4.5\\ 4\\ 1.67\\ 1.33\\ 0.835\\ \pm 0.835\\ \pm 0.67\\ 4.5\\ 4\\ 1.67\\ 1.33\\ 0.835\\ \pm 0.835\\ \pm 0.67\\ \end{array}$	Α
V _o Load Capacitance	AXA04F18-L AXA04A18-L AXA01B18-L AXA01C18-L AXA00H18-L AXA00BB18-L AXA00CC18-L AXA04F36-L AXA04A36-L AXA01B36-L AXA01C36-L AXA00B36-L AXA00BB36-L AXA00CC36-L	All		- - - - - - - - -	- - - - - - - - - -	10300 6800 1200 750 300 680 380 10300 6800 1200 750 300 680 380	uF

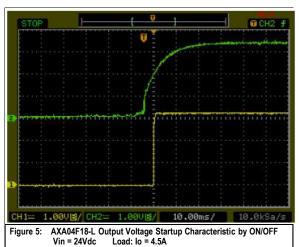
Output Specifications

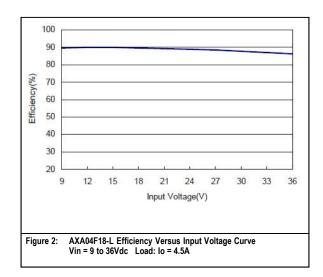
Table 3. Output Specifications con't:

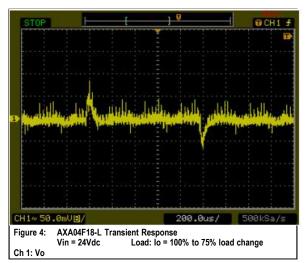
Parameter		Condition	Symbol	Min	Nom	Max	Unit
Output Ripple, pk-pk	AXA04F18-L AXA04A18-L AXA01B18-L AXA01C18-L AXA00H18-L AXA00BB18-L AXA00CC18-L AXA04F36-L AXA04F36-L AXA01B36-L AXA01C36-L AXA00B36-L AXA00B36-L AXA00B36-L	20MHz bandwidth, measured with a 1uF MLCC and a 10uF Tantalum Capacitor	Vo		75 75 100 100 150 100 100 75 75 100 100 150 100	-	mV
Line Regulation	Single Output Dual Output	$V_{IN,DC}=V_{IN,min}$ to $V_{IN,max}$	±%V _O	-	-	0.2 0.5	%
Load Regulation	AXA04F18-L AXA04A18-L AXA01B18-L AXA01C18-L AXA00BB18-L AXA00CC18-L AXA04F36-L AXA04A36-L AXA01B36-L AXA01C36-L AXA00B36-L AXA00B36-L AXA00B36-L	I _O =I _{O,min} to I _{O,max}	±%V _O	-	- - - - - - - - -	0.5 0.5 0.2 0.2 1.0 1.0 0.5 0.5 0.2 0.2 1.0	%
Load Cross Regulation	Dual Output	Asymmetrical Load 25%/100% Full Load	±%V _O	-	-	5.0	%
V _O Dynamic Response	Peak Deviation Settling Time	25% load change, slew rate = 1A/uS	±%V _O	-	3 300	5 -	% uSec
Output Voltage Overshoot		All	%V _o	-		5	%
Temperature Coefficient		All	%/°C	-	-	0.02	%
Switching Frequency		All	f _{SW}	-	330	-	KHz
Output Over Current Protection		All	%I _{O,max}	-	150	-	%
Output Short Circuit Prot	ection	All		Hie	ccip Auotm	atic Reco	very

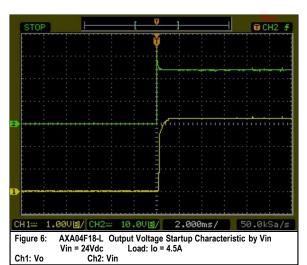

Output Specifications


Table 3. Output Specifications con't:

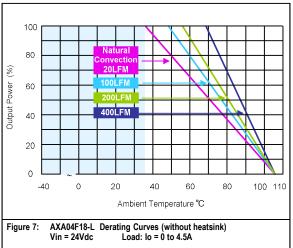

Parameter		Condition	Symbol	Min	Nom	Max	Unit
Output Over Voltage Protection	AXA04F18-L AXA04A18-L AXA01B18-L AXA01C18-L AXA00BB18-L AXA00CC18-L AXA04F36-L AXA04A36-L AXA01B36-L AXA01C36-L AXA00H36-L AXA00BB36-L	All	V _O	Min	3.9 6.2 15 18 30 ±15 ±18 3.9 6.2 15 18 30 ±15		Vdc
	AXA00CC36-L			-	±18	-	


AXA04F18-L Performance Curves





Ch2: Remote On/Off



Ch1: Vo

AXA04F18-L Performance Curves

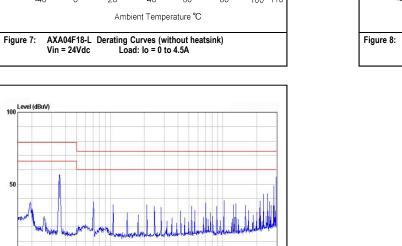
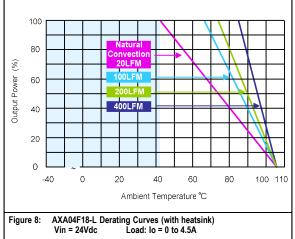
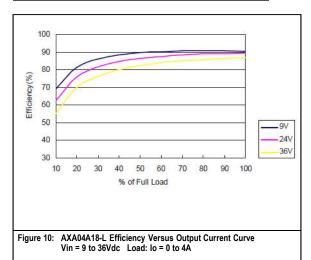
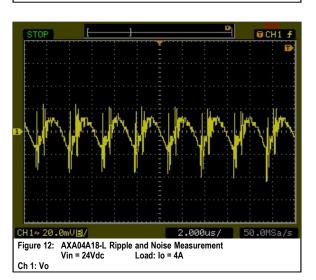
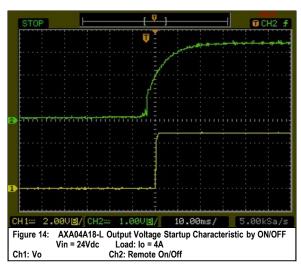



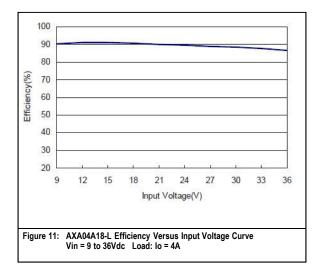
Figure 9: AXA04F18-L Conduction Emission of EN550122 Class A Vin = 24Vdc Load: lo = 4.5A

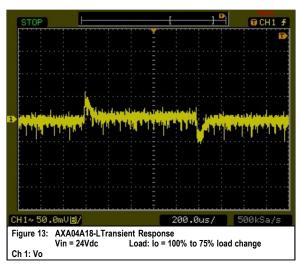
2 Frequency (MHz)

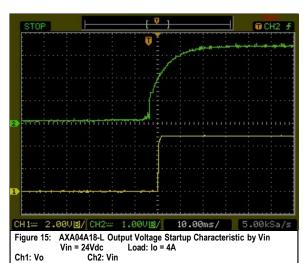

Note - All test conditions are at 25 °C

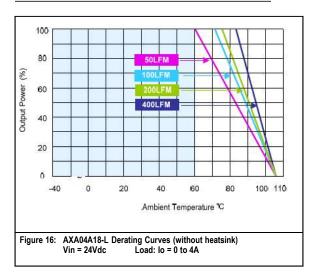

0 0.15

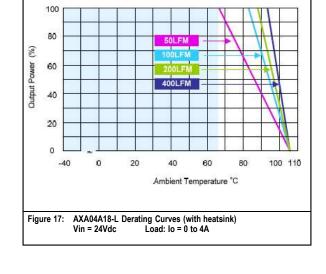


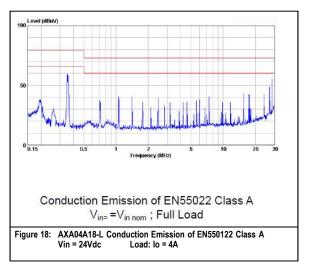



AXA04A18-L Performance Curves

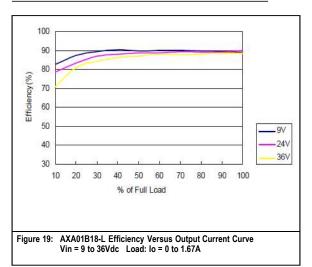


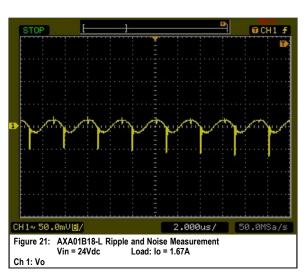


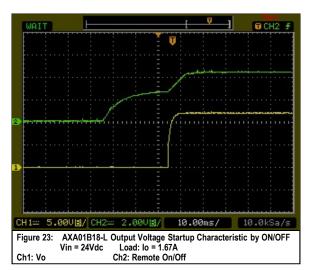


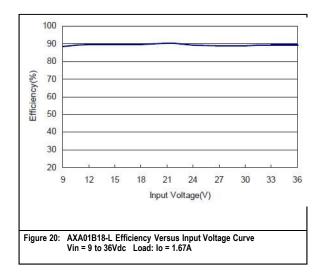


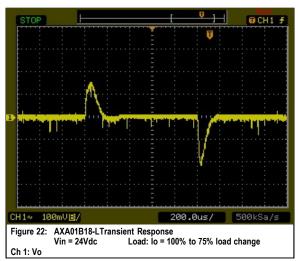
AXA04A18-L Performance Curves

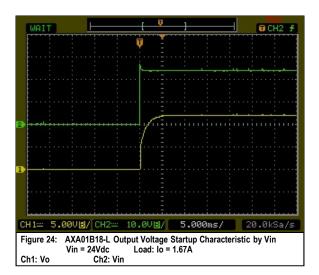


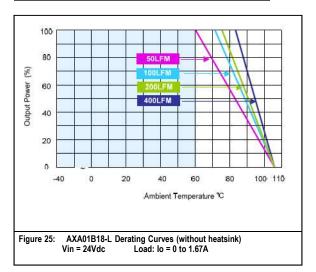


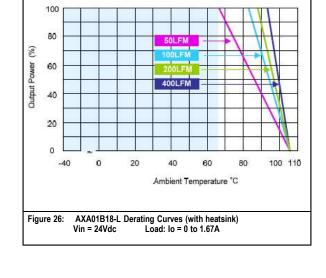

Note - All test conditions are at 25 °C

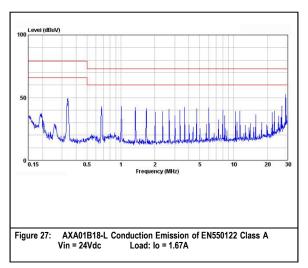



AXA01B18-L Performance Curves

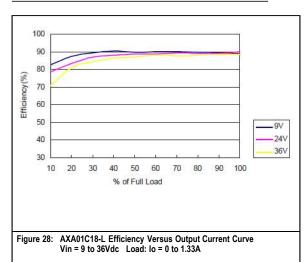


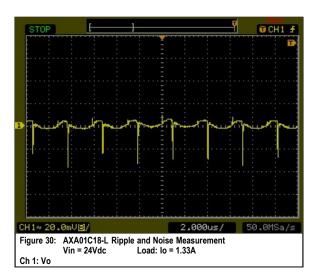


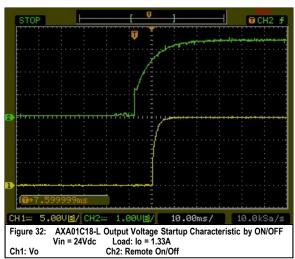


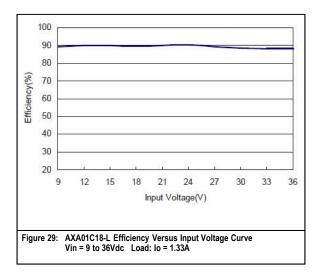


AXA01B18-L Performance Curves

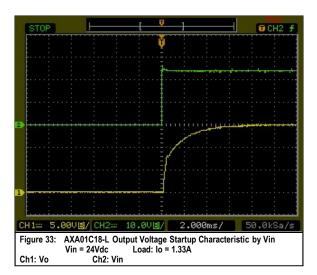


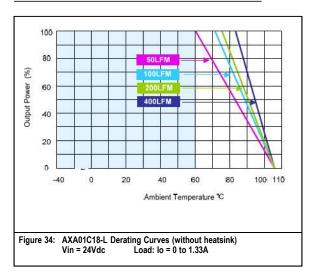


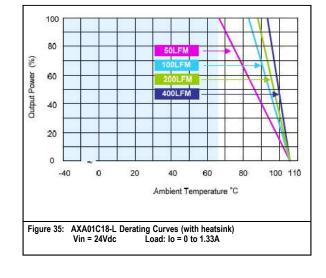

Note - All test conditions are at 25 °C

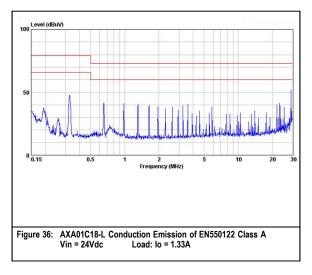


AXA01C18-L Performance Curves

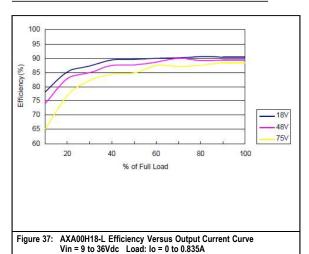


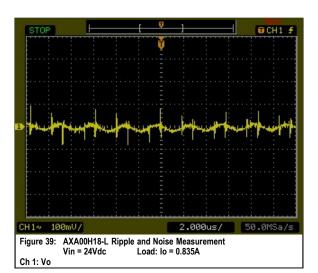


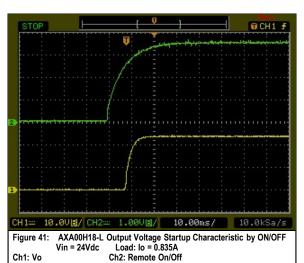


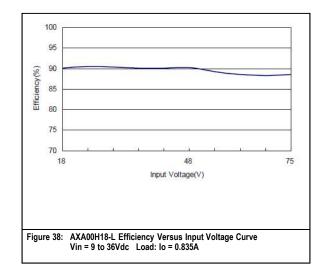


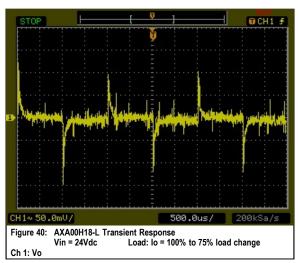
AXA0C18-L Performance Curves

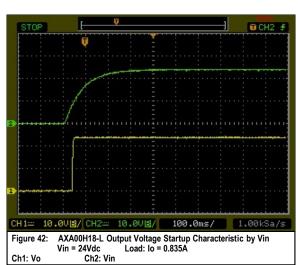


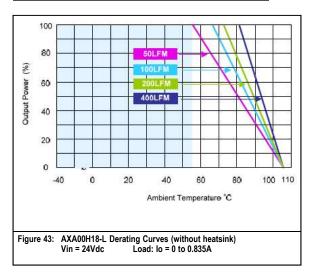


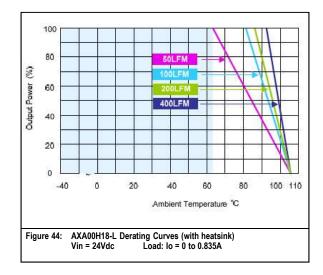


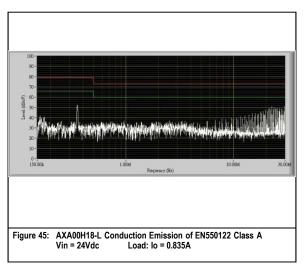

Note - All test conditions are at 25 °C


AXA00H18-L Performance Curves

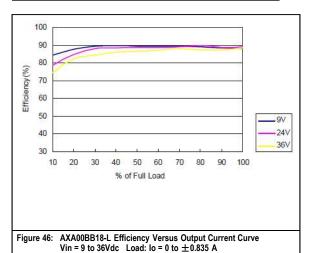


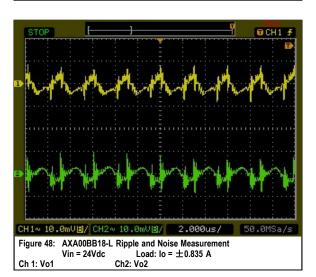


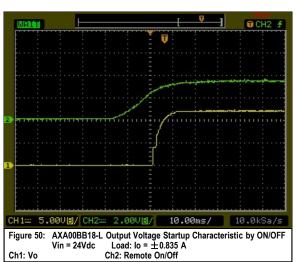


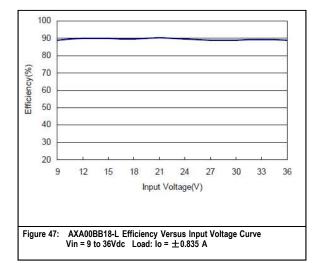


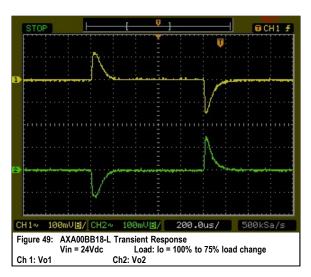
AXA00H18-L Performance Curves

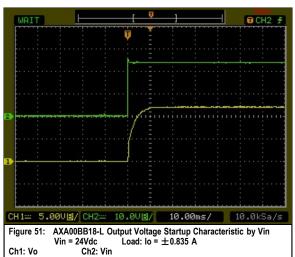


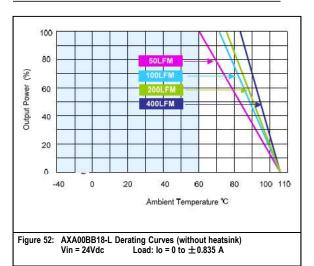


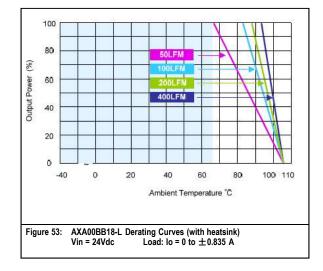

Note - All test conditions are at 25 °C

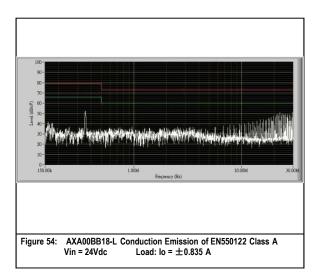



AXA00BB18-L Performance Curves

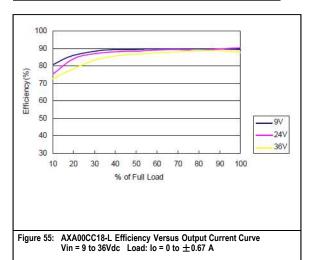


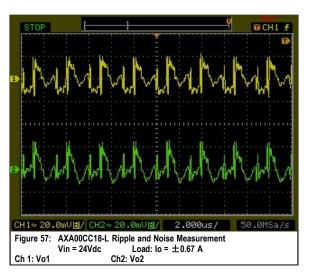


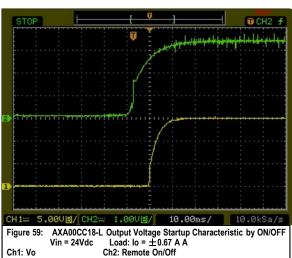


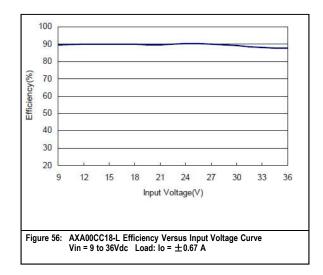


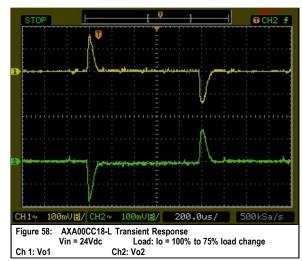
AXA00BB18-L Performance Curves

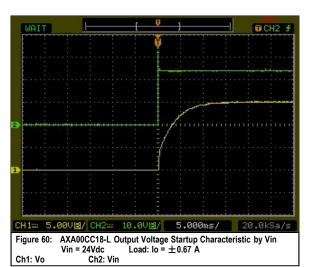


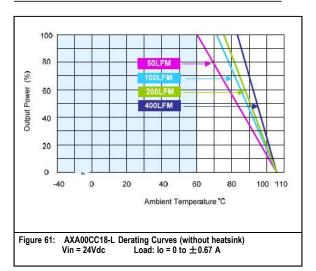


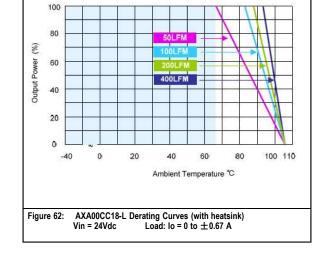

Note - All test conditions are at 25 °C

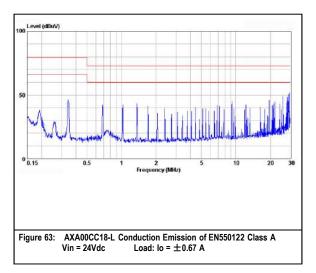



AXA00CC18-L Performance Curves

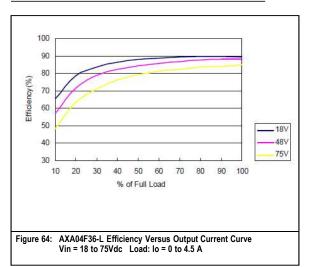


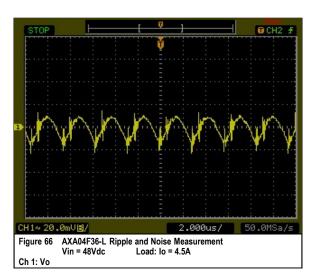


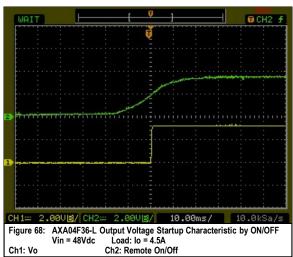


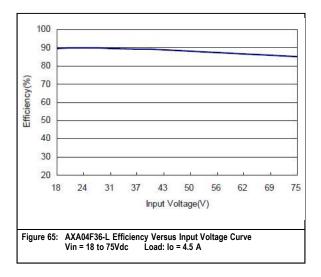


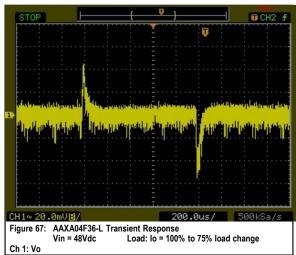
AXA00CC18-L Performance Curves

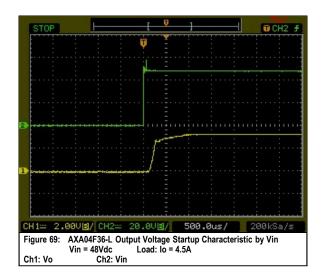


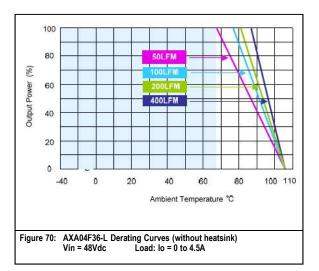


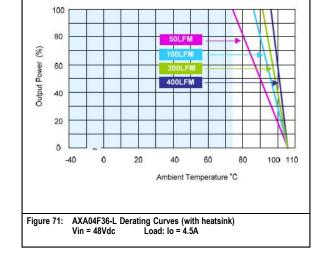

Note - All test conditions are at 25 °C

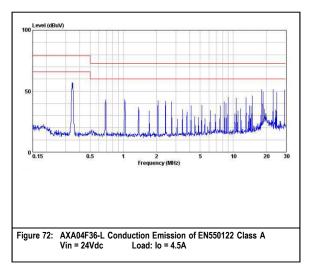



AXA04F36-L Performance Curves

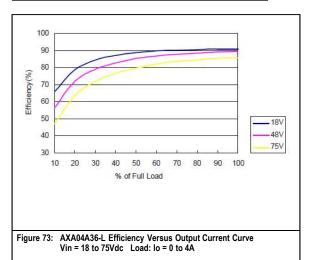


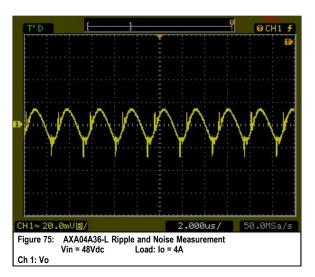


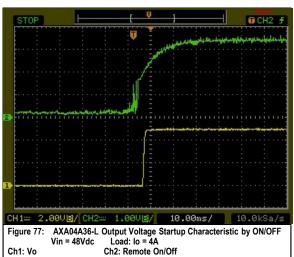


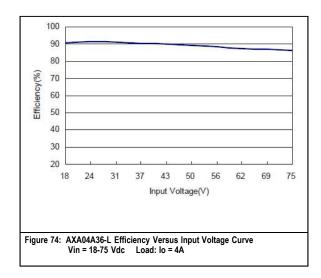


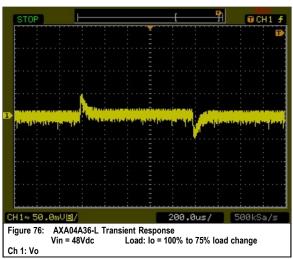
AXA04F36-L Performance Curves

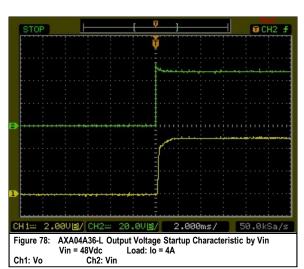


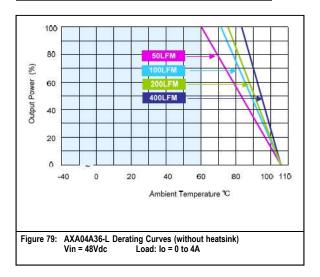


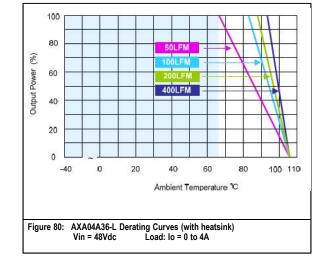

Note - All test conditions are at 25 °C

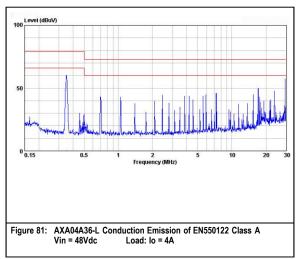



AXA04A36-L Performance Curves

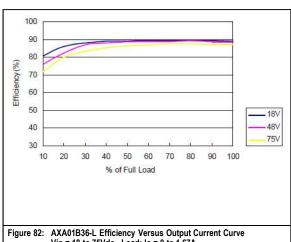


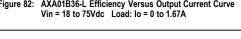


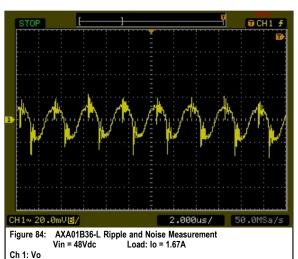


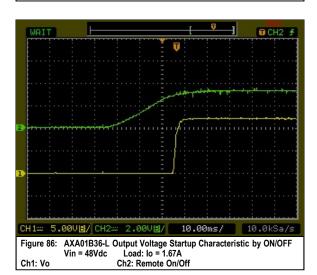


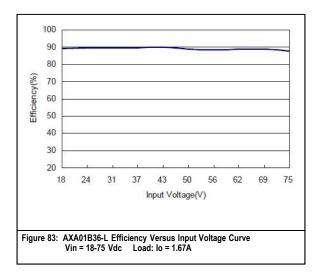
AXA04A36-L Performance Curves

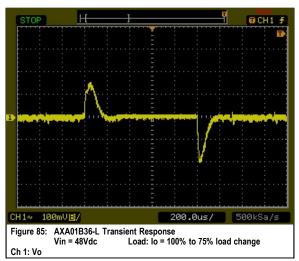


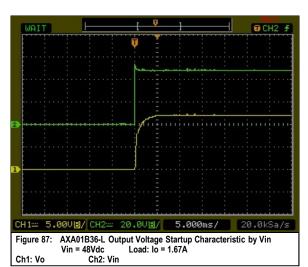


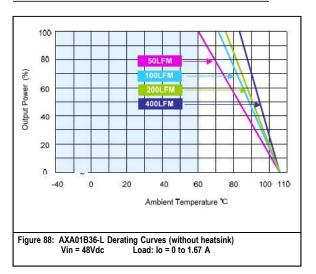


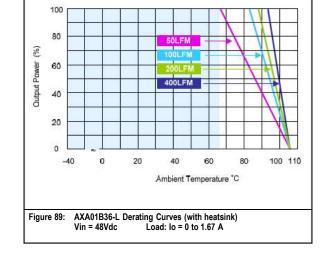

Note - All test conditions are at 25 °C

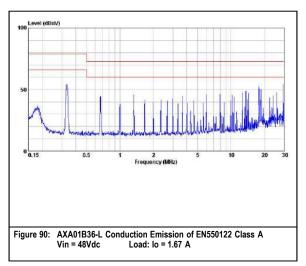

AXA01B36-L Performance Curves



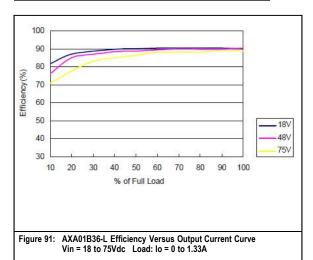


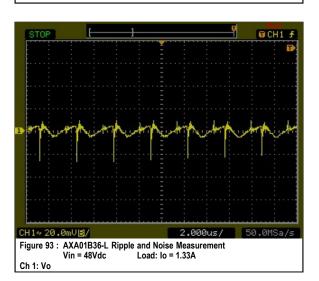


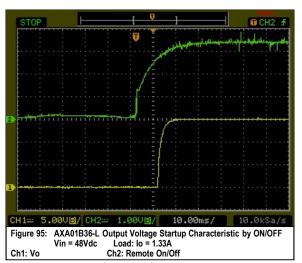


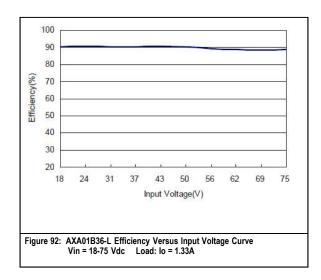


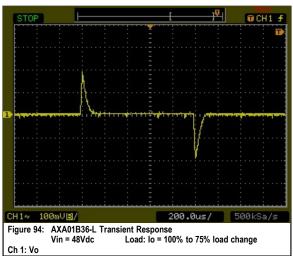
AXA01B36-L Performance Curves

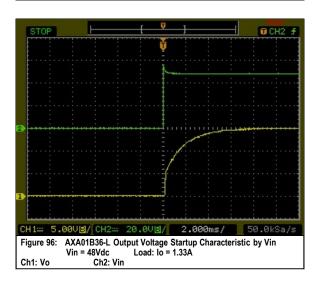


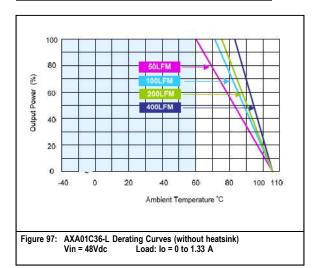


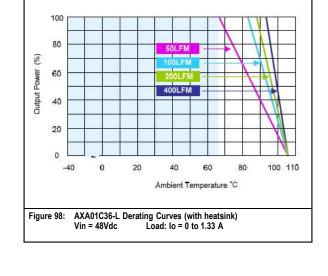

Note - All test conditions are at 25 °C

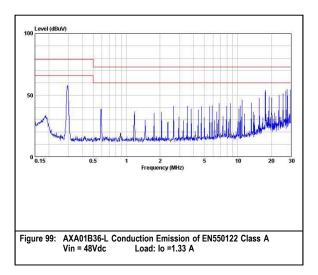



AXA01C36-L Performance Curves

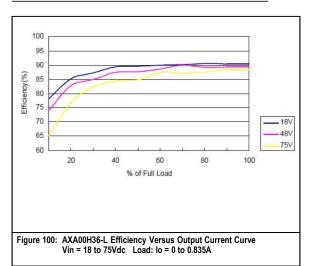


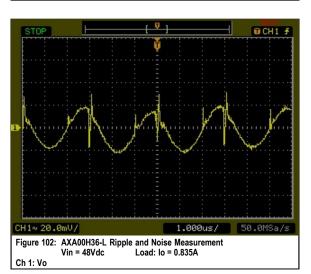


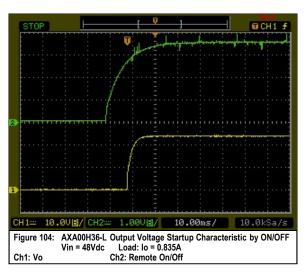


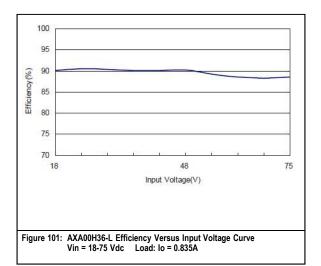


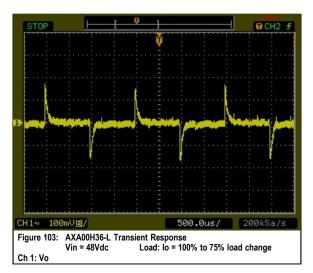
AXA01C36-L Performance Curves

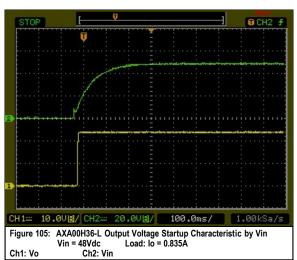


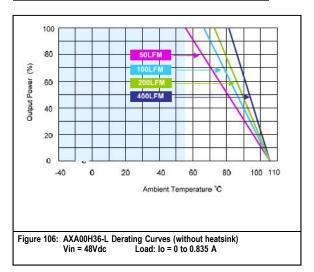


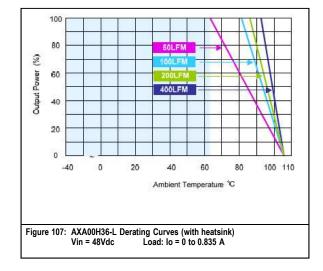


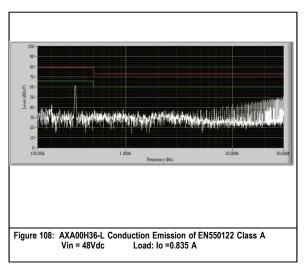

Note - All test conditions are at 25 °C


AXA00H36-L Performance Curves

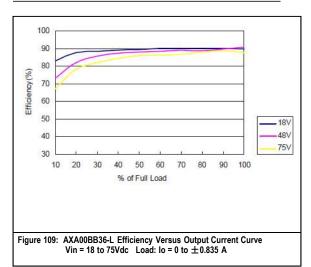


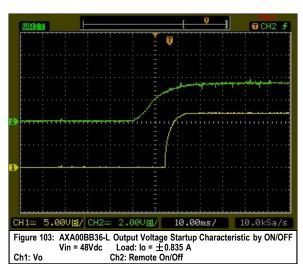


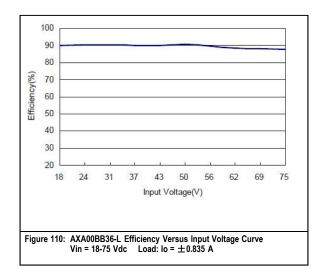


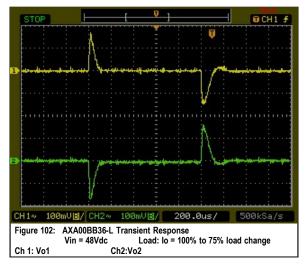


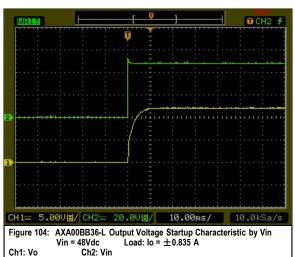
AXA00H36-L Performance Curves

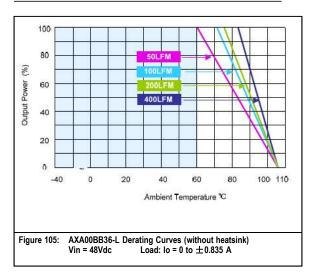


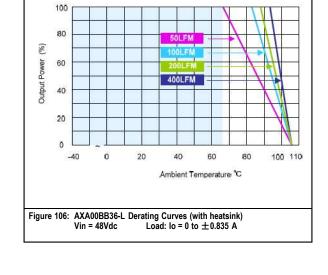


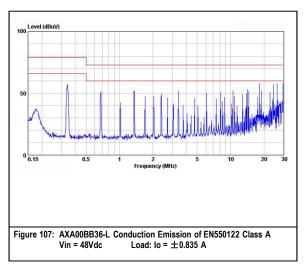

Note - All test conditions are at 25 °C


AXA00BB36-L Performance Curves

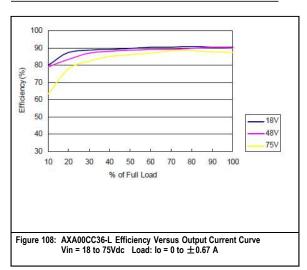


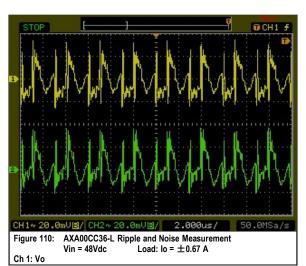


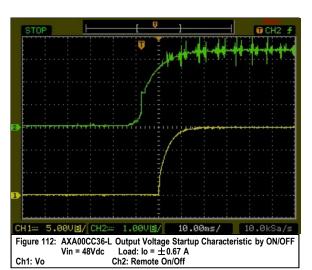


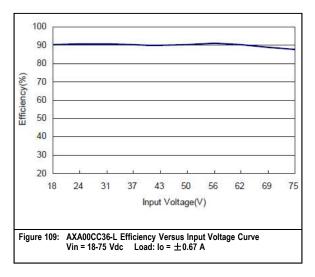


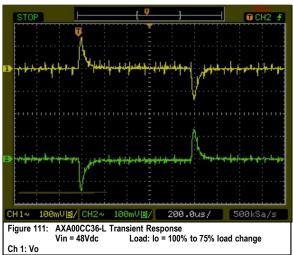
AXA00BB36-L Performance Curves

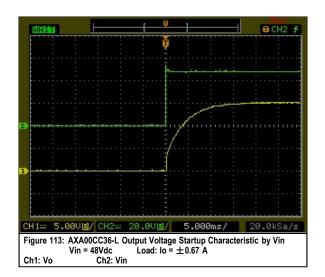


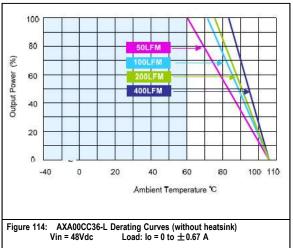



Note - All test conditions are at 25 °C




AXA00CC36-L Performance Curves





AXA00CC36-L Performance Curves

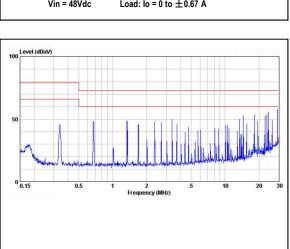
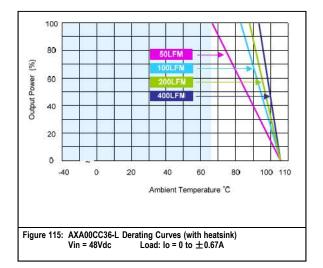
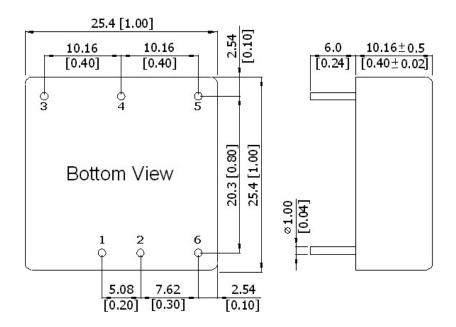



Figure 116: AXA00CC36-L Conduction Emission of EN550122 Class A

Load: Io = ± 0.67 A

Note - All test conditions are at 25 °C


Vin = 48Vdc

Mechanical Specifications

Mechanical Outlines

Note:

1.All dimensions in mm (inches) 2.Tolerance: X.X \pm 0.25 (X.XX \pm 0.01)

 $X.XX\pm0.13$ ($X.XXX\pm0.005$)

3.Pin diameter 1.0 \pm 0.05 (0.04 \pm 0.002)

Pin Connections

Single output

Pin 1 - +Vin

Pin 2 - -Vin

Pin 3 - +Vout

Pin 4 - Trim

Pin 5 - -Vout

Pin 6 - Remote On/Off

Dual Output

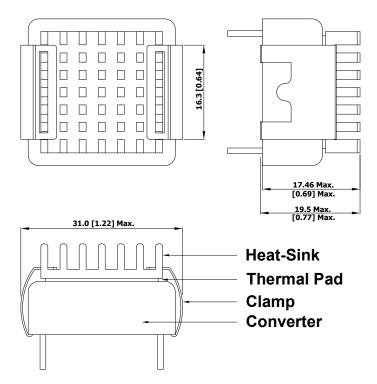
Pin 1 – +Vin

Pin 2 - -Vin

Pin 3 - +Vout

Pin 4 - Common

Pin 5 - -Vout


Pin 6 - Remote On/Off

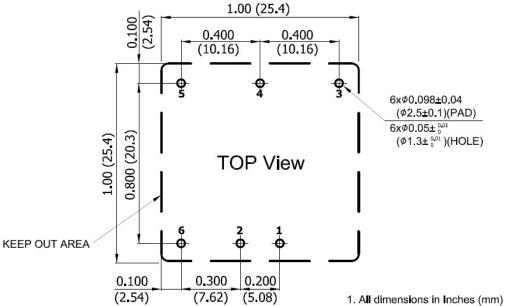
Physical Characteristics

Device code suffix	L
Case Size	25.4x25.4x10.16mm (1.0x1.0x0.4 inches)
Case Material	Aluminium Alloy, Black Anodized Coating
Base Material	FR4 PCB (flammability to UL 94V-0 rated)
Pin Material	Copper Alloy with Gold Plate Over Nickel Subplate
Weight	15g

Heatsink (Option -HS)

Heatsink Material: Aluminum

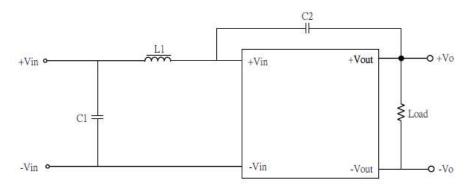
Finish: Anodoc treatment (Black)


Weight: 2g

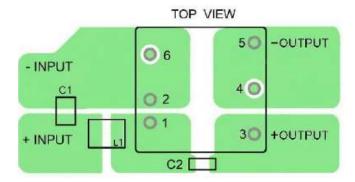
The advantages of adding a heatsink are:

- 1. To improve heat dissipation and increase the stability and reliability of the DC/DC converters at high operating temperatures.
- 2. To increase operating temperature of the DC/DC converter, please refer to Derating Curve.

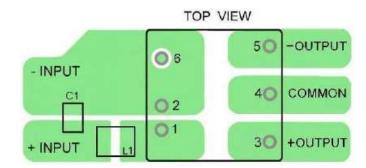
Recommended Pad Layout for Single & Dual Output Converter



- 1. All dimensions in Inches (mm)
 Tolerance: X.XX±0.02" (X.X±0.5)
 X.XXX±0.01" (X.XX±0.25mm)
- 2. Pin pitch tolerance:±0.01" (±0.25mm)
- 3. Pln dimension tolerance:±0.004" (±0.1mm)



EMC Considerations


EMI-Filter to meet EN 55022, class A, FCC part 15, level Conducted and radiated emissions EN55022 Class A

Recommended EN55022 Class A Filter

AXA Module Single output

AXA Module Dual Output

Table 4. Conducted EMI emission specifications

Model	Component	Value
	C1	3.3µF/50V 1210 X7R MLCC
AXAXXX18-L	C2	220pF/2KV 1808 MLCC
	L1	SMTDR53-6R8M-JT8
	C1	2.2µF/100V 1210 X7R MLCC
AXAXXX36-L	C2	220pF/2KV 1808 MLCC
	L1	SMTDR54-120M-JT8

Rev.08.21.20_#1.3 AXA 20W Series Page 41

Safety Certifications

The AXA 20W series power supply is intended for inclusion in other equipment and the installer must ensure that it is in compliance with all the requirements of the end application. This product is only for inclusion by professional installers within other equipment and must not be operated as a stand alone product.

Table 5. Safety Certifications for AXA 20W series power supply system

Document	Description
cUL/UL 60950-1 (CSA certificate)	US and Canada Requirements
IEC/EN 60950-1 (CB-scheme)	European Requirements

Operating Temperature

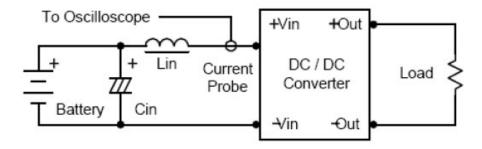
Table 6. Environmental Specifications:

			Ма	ıx	
Parameter	Model / Condition	Min	Without Heatsink	With Heatsink	Unit
Operating Temperature Range Natural Convection Nominal Vin, Load 100%I _O . (for Power Derating see relative Derating Curves)	AXA04F18-L AXA04F36-L AXA04AXX-L AXA01BXXL AXA01CXX-L AXA00BBXX-L AXA00CCXX-L AXA00HXX-L	-40	64 68 60 60 60 60 60 55	71 74 67 67 67 67 67 63	оС
	50LFM Convection without Heatsink	18.2	-	-	
	50LFM Convection with Heatsink	15.3	-	-	
	100LFM Convection without Heatsink	13.9	-	-	
	100LFM Convection with Heatsink	8.8	-	-	
Thermal Impedance	200LFM Convection without Heatsink 12.1		-	°C/W	
	200LFM Convection with Heatsink	6.8	-	-	
	400LFM Convection without Heatsink	9.1	-	-	
	400LFM Convection with Heatsink	4.6	-	-	
Case Temperature		-	+10)5	οС
Storage Temperature Range		-50	+12	25	οС
Humidity (non condensing)		-	95	5	%
Cooling	Fr	ee-Air con	vection		
RFI	Six-Side	d Shielded	, Metal Case		
Lead Temperature (1.5mm from case for 10Sec.)		-	26	0	oC

Note1 - The "natural convection" is about 20LFM but is not equal to still air (0 LFM).

MTBF and Reliability

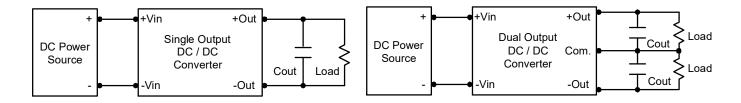
The MTBF of AXA 20W series of DC/DC converters has been calculated using MIL-HDBK 217F NOTICE2, Operating Temperature 25 $^{\rm o}$ C, Ground Benign.


Model	MTBF	Unit
AXA04F18-L	327200	
AXA04A18-L	362500	
AXA01B18-L	516500	
AXA01C18-L	522100	
AXA00H18-L	647500	
AXA00BB18-L	474500	
AXA00CC18-L	506500	l la uma
AXA04F36-L	331100	Hours
AXA04A36-L	365100	
AXA01B36-L	519100	
AXA01C36-L	620100	
AXA00H36-L	620000	
AXA00BB36-L	440900	
AXA00CC36-L	508600	

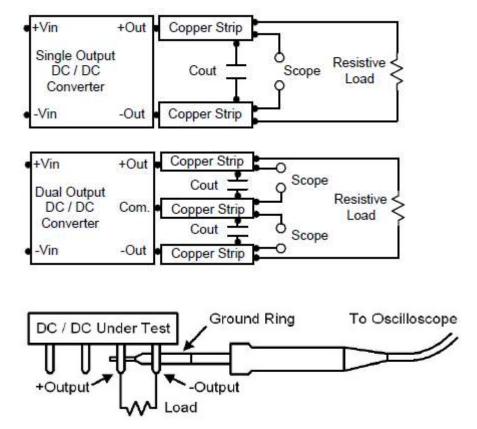
Application Notes

Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with a inductor Lin (4.7 μ H) and Cin (220 μ F, ESR < 1.0 Ω at 100 KHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 KHz.

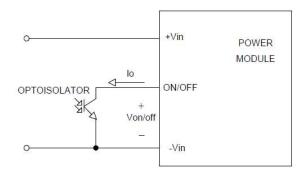


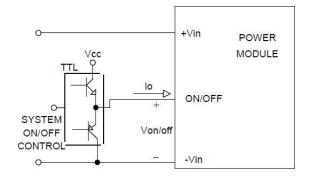
Component	Value	Reference
Lin	4.7μH	-
Cin	220uF (ESR<1.0Ω at 100KHz)	Aluminum Electrolytic Capacitor


Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 4.7uF capacitors at the output.

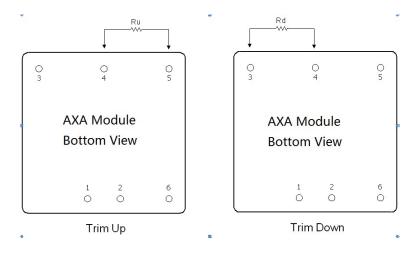
Peak-to-Peak Output Noise Measurement Test


Use a 1uF ceramic capacitor and a 10uF tantalum capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter



Remote ON/OFF

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 6) during a logic low is -500µA. The maximum allowable leakage current of a switch connected to the on/off terminal (Pin 6) at logic high (3.5V to 12V) is 10mA.


Isolated-Closure Remote ON/OFF

Level Control Using TTL Output

External Output Trimming

Output can be externally trimmed by using the method shown below. The trim up/down range is $\pm 10\%$ minimum of the nominal output voltage

AXA04FXX-L Trim Table

Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Volts
Rd=	72.61	32.55	19.20	12.52	8.51	5.84	3.94	2.51	1.39	0.50	KOhms
Trim up	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox1.01	Vox1.02	Vox1.03	Vox1.04	Vox1.05	Vox1.06	Vox1.07	Vox1.08	Vox1.09	Vox1.10	Volts
Ru=	60.84	27.40	16.25	10.68	7.34	5.11	3.51	2.32	1.39	0.65	KOhms

AXA04AXX-L Trim Table

Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Volts
Rd=	138.88	62.41	36.92	24.18	16.53	11.44	7.79	5.06	2.94	1.24	KOhms
Trim up	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox1.01	Vox1.02	Vox1.03	Vox1.04	Vox1.05	Vox1.06	Vox1.07	Vox1.08	Vox1.09	Vox1.10	Volts

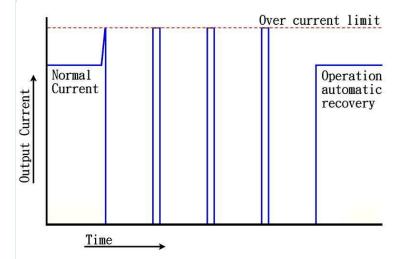
Rev.08.21.20_#1.3 AXA 20W Series Page 48

AXA01BXX-L Trim Table

Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Volts
Rd=	413.55	184.55	108.22	70.05	47.15	31.88	20.98	12.80	6.44	1.35	KOhms
Trim up	1	2	3	4	5	6	7	8	9	10	%
Vout=	1 Vox1.01	2 Vox1.02	3 Vox1.03	4 Vox1.04	5 Vox1.05	6 Vox1.06	7 Vox1.07	8 Vox1.08	9 Vox1.09	10 Vox1.10	% Volts

AXA01CXX-L Trim Table

Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Volts
Rd=	530.73	238.61	141.24	92.56	63.35	48.37	29.96	19.53	11.41	4.92	KOhms
Trim up	1	2	3	4	5	6	7	8	9	10	%
Trim up Vout=	1 Vox1.01	2 Vox1.02	3 Vox1.03	4 Vox1.04	5 Vox1.05	6 Vox1.06	7 Vox1.07	8 Vox1.08	9 Vox1.09	10 Vox1.10	% Volts


AXA00HXX-L Trim Table

Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Volts
Rd=	598.66	267.78	157.49	102.34	69.25	47.19	31.44	19.62	10.43	3.08	KOhms
Trim up	1	2	3	4	5	6	7	8	9	10	%
Vout=	1 Vox1.01	2 Vox1.02	3 Vox1.03	4 Vox1.04	5 Vox1.05	6 Vox1.06	7 Vox1.07	8 Vox1.08	9 Vox1.09	10 Vox1.10	% Volts

Overcurrent Protection

The AXA 20W series converters contain hiccup mode output over current protection that prevents damage to the product in the event of an overload or a short circuit. Normally, over current is maintained at approximately 150 percent of rated current for AXA 20W series. Depending upon the converter design, there are other ways of protecting the converter against over current conditions such as the constant current limiting or current foldback methods. With "hiccup" over current protection, the converter shuts off upon an occurrence of an over current condition. After a brief time interval, it automatically tries to restart the converter. If the restart is successful, normal operation continues. If the over current condition still exists, the converter will shut off again. With a sustained over current condition, such as a short circuit on the output, this automatic retry behavior will result in periodic pulses of current and voltage on the output. The output current waveform with hiccup over current protection is shown in figure below.

Hiccup operation has none of the drawbacks of the other two protection methods, although its circuit is more complicated because it requires a timing circuit. The excess heat due to overload lasts for only a short duration in the hiccup cycle, hence the junction temperature of the power devices is much lower. The hiccup operation can be done in various ways. For example, one can start hiccup operation any time once an over-current event is detected; or prohibit hiccup during a designated start-up is usually larger than normal operation and it is easier for an over-current event is detected; or prohibit hiccup during a designated start-up interval (usually a few milliseconds). The reason for the latter operation is that during start-up, the converter needs to provide extra current to charge up the output capacitor. Thus the current demand during start-up is usually larger than during normal operation and it is easier for an over-current event to occur. If the converter starts to hiccup once there is an over-current, it might never start up successfully. Hiccup mode protection will give the best protection for a converter against over current situations, since it will limit the average current to the load at a low level, so reducing power dissipation and case temperature in the power devices.

Overvoltage Protection

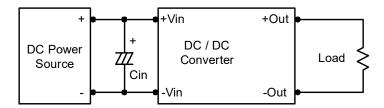
The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals.

The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.

Short Circuitry Protection

Continuous, hiccup and auto-recovery mode.

During short circuit, converter still shut down, The average current during this condition will be very low and the device will be safe in this condition.

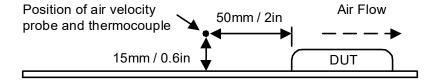


Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module.

In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup.

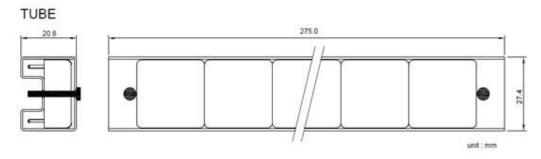
Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 KHz) capacitor of a 10μ F for the 24V and 48V devices



Rev.08.21.20_#1.3 AXA 20W Series Page 51

Thermal Considerations

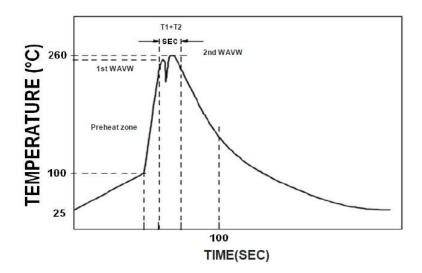
Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.



Maximum Capacitive Load

The AXA 20W series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Packaging Information


10 PCS per TUBE

Soldering and Reflow Considerations

Lead free wave solder profile for AXA 20W series.

Wave soldering temp in below figurer is 220degC.

The lasting time to be larger than 10s.

Zone	Reference Parameter
Preheat zone	Rise temp speed: 3°C/sec max.
Preneat zone	Preheat temp : 100~130°C
Actual heating	Peak temp: 250~260°C Peak Time
	Peak time(T1+T2): 4~6 sec

Note:

Reference Solder: Sn-Ag-Cu: Sn-Cu: Sn-Ag Hand Welding: Soldering iron: Power 60W

Welding Time: 2~4 sec Temp.: 380~400 °C

Rev.08.21.20_#1.3 AXA 20W Series Page 53

<u>Weight</u>

The AXA series weight is 15g maximum.

Record of Revision and Changes

Issue	Date	Description	Originators
1.0	06.05.2014	First Issue	K. Wang
1.1	11.08.2017	Update the L1 value	A. Zhang
1.2	11.19.2018	Add wave soldering temp in below figure 220degC. And define the lasting time to be larger than 10s.	K. Wang
1.3	08.21.2020	Update the operating ambient temperature to 85degC	K. Wang

WORLDWIDE OFFICES

Americas

2900 South Diablo Way Suite B100 Tempe, AZ 85282 USA +1 888 412 7832

Europe (UK)

Ground Floor Offices Barberry House, 4 Harbour Buildings Waterfront West, Brierley Hill West Midlands, DY5 1LN, UK +44 (0) 1384 842 211

Asia (HK)

14/F, Lu Plaza 2 Wing Yip Street Kwun Tong, Kowloon Hong Kong +852 2176 3333

www.artesyn.com

For more information: www.artesyn.com
For support: productsupport.ep@artesyn.com