

ARTESYN ERM 20W SERIES

DC/DC Converter

PRODUCT DESCRIPTION

Advanced Energy's Artesyn ERM 20W series is a new range of high performance 20W isolated dc-dc converter within encapsulated 2"x1" package which specifically design for railway applications. There are 18 models available for railway input voltage of 24(9~36)Vdc or 48(18~75)Vdc or 110(40~160)Vdc and tight output voltage regulation. Further features include over current, over voltage, short circuit protection, remote ON/OFF, output trim and EMI filter meets EN55032/22 & FCC Part15 Class A as well.

SPECIAL FEATURES S

- Industrial Standard 2"×1" Package
- Ultra-wide 4:1 Input Voltage Range
- Fully Regulated Output Voltage
- I/O Isolation 3000Vac with Reinforced Insulation
- Operating Ambient Temp. Range -40 °C to +88°C (With derating)
- No Minimum Load Requirement
- Overload and Short Circuit Protection
- Remote On/Off, Output Voltage Trim
- Designed-in Conducted EMI meets EN55032/22 Class A & FCC Level A
- Vibration and Shock meets EN61373
- Fire Protection Test meet EN45545-2
- Railway EMC Standard meets EN50121-3-2

AT A GLANCE

Total Power

20 Watts

Input Voltage

9 to 36 Vdc

18 to 75 Vdc

40 to 160 Vdc

of Outputs

Single / Dual

SAFETY

- UL/cUL/IEC/EN62368-1 (60950-1)
- EN50155(IEC60571)
- CE Mark

TYPICAL APPLICATIONS

Railway

MODEL NUMBERS

Model ¹	Input Voltage	Output Voltage	Minimum Load	Maximum Load	Efficiency
ERM04A18	9-36Vdc	5Vdc	0A	4A	87%
ERM01B18	9-36Vdc	12Vdc	0A	1.67A	87%
ERM01C18	9-36Vdc	15Vdc	0A	1.33A	87%
ERM01H18	9-36Vdc	24Vdc	0A	0.833A	87%
ERM01BB18	9-36Vdc	±12Vdc	0A	±0.833A	86%
ERM01CC18	9-36Vdc	±15Vdc	0A	±0.667A	86%
ERM04A18B	9-36Vdc	5Vdc	0A	4A	87%
ERM01B18B	9-36Vdc	12Vdc	0A	1.67A	87%
ERM01C18B	9-36Vdc	15Vdc	0A	1.33A	87%
ERM01H18B	9-36Vdc	24Vdc	0A	0.833A	87%
ERM01BB18B	9-36Vdc	±12Vdc	0A	±0.833A	86%
ERM01CC18B	9-36Vdc	±15Vdc	0A	±0.667A	86%
ERM04A36	18-75Vdc	5Vdc	0A	4A	87%
ERM01B36	18-75Vdc	12Vdc	0A	1.67A	88%
ERM01C36	18-75Vdc	15Vdc	0A	1.33A	88%
ERM01H36	18-75Vdc	24Vdc	0A	0.833A	88%
ERM01BB36	18-75Vdc	±12Vdc	0A	±0.833A	87%
ERM01CC36	18-75Vdc	±15Vdc	0A	±0.667A	87%
ERM04A36B	18-75Vdc	5Vdc	0A	4A	87%
ERM01B36B	18-75Vdc	12Vdc	0A	1.67A	88%
ERM01C36B	18-75Vdc	15Vdc	0A	1.33A	88%
ERM01H36B	18-75Vdc	24Vdc	0A	0.833A	88%
ERM01BB36B	18-75Vdc	±12Vdc	0A	±0.833A	87%
ERM01CC36B	18-75Vdc	±15Vdc	0A	±0.667A	87%

MODEL NUMBERS

Model ¹	Input Voltage	Output Voltage	Minimum Load	Maximum Load	Efficiency
ERM04A110	40-160Vdc	5Vdc	0A	4A	84%
ERM01B110	40-160Vdc	12Vdc	0A	1.67A	86%
ERM01C110	40-160Vdc	15Vdc	0A	1.33A	86%
ERM01H110	40-160Vdc	24Vdc	0A	0.833A	86%
ERM01BB110	40-160Vdc	±12Vdc	0A	±0.833A	86%
ERM01CC110	40-160Vdc	±15Vdc	0A	±0.667A	86%
ERM04A110B	40-160Vdc	5Vdc	0A	4A	84%
ERM01B110B	40-160Vdc	12Vdc	0A	1.67A	86%
ERM01C110B	40-160Vdc	15Vdc	0A	1.33A	86%
ERM01H110B	40-160Vdc	24Vdc	0A	0.833A	86%
ERM01BB110B	40-160Vdc	±12Vdc	0A	±0.833A	86%
ERM01CC110B	40-160Vdc	±15Vdc	0A	±0.667A	86%

Note1 - Suffix "B" means baseplate, see mechanical drawing.

Absolute Maximum Ratings

Stress in excess of those listed in the "Absolute Maximum Ratings" may cause permanent damage to the power supply. These are stress ratings only and functional operation of the unit is not implied at these or any other conditions above those given in the operational sections of this TRN. Exposure to any absolute maximum rated condition for extended periods may adversely affect the power supply's reliability.

Table 1. Absolute Maximum Ratings						
Parameter	Model	Symbol	Min	Тур	Max	Unit
Input Surge Voltage 0.1 Sec.max	24V Input Models 48V Input Models 110V Input Models	V _{IN,DC}	-0.7 -0.7 -0.7	- - -	50 100 170	Vdc Vdc Vdc
Maximum Output Power	All models	P _{O,max}	-	-	20	W
Isolation Voltage Input to output (60 seconds) Input / Output to Case (60 seconds)	All models All models		3000 1500			Vac Vac
Isolation Resistance 500Vdc	All models		1000	-	-	Mohm
Isolation Capacitance 100KHz, 1V	All models		-	1500	-	pF
Operating Case Temperature	All models	T _{CASE}	-	-	+105	°C
Storage Temperature	All models	T _{STG}	-50		+125	°C
Humidity (non-condensing) Operating Non-operating	All models All models		-	-	95 95	% %
MTBF (MIL-HDBK-217F@25°C, Full load, Ground Benign)	All models		655,100	-	-	Hours

Note 1 - With Derating and under Natural Convection

Input Specifications

Table 2. Input Specifications							
Parameter		Condition	Symbol	Min	Тур	Max	Unit
Operating Input Voltage, DC	24V Input Models 48V Input Models 110V Input Models	All	V _{IN,DC}	9 18 40	24 48 110	36 75 160	Vdc Vdc Vdc
Start-Up Threshold Voltage	24V Input Models 48V Input Models 110V Input Models	All	V _{IN,ON}	- - -	- - -	9 18 40	Vdc Vdc Vdc
Under Voltage Shutdown	24V Input Models 48V Input Models 110V Input Models	All	V _{IN,OFF}	- - -	7.5 16 37	- - -	Vdc Vdc Vdc
Input Current	ERM04A18 ERM01B18 ERM01C18 ERM01H18 ERM01BB18 ERM01CC18 ERM04A36 ERM01B36 ERM01C36 ERM01H36 ERM01H36 ERM01H36 ERM01B10 ERM01B110 ERM01B110 ERM01B110 ERM01B110 ERM01B110	V _{IN,DC} =V _{IN,nom}	I _{IN,full} load		958 960 955 957 969 969 479 474 472 473 479 216 212 211 211 211 212	-	mA mA mA mA mA mA mA mA mA mA mA mA mA
Efficiency @Max. Load	ERM04A18 ERM01B18 ERM01C18 ERM01H18 ERM01BB18 ERM01CC18 ERM04A36 ERM01B36 ERM01C36 ERM01H36 ERM01H36 ERM01H36 ERM01H36 ERM01CC36 ERM01CC36 ERM01CC36 ERM04A110 ERM01B110 ERM01B110 ERM01C110 ERM01H110 ERM01BB110 ERM01BB110	V _{IN,DC} =V _{IN,nom} I _O =I _{O:max} T _A =25 °C	η	-	87 87 87 86 86 86 87 88 88 88 87 87 84 86 86 86	- - - - - - - - - - - - - - - - - - -	% % % % % % % % % % % % %

Input Specifications

Table 2. Input Specifications con't									
Parameter		Condition	Symbol	Min	Тур	Max	Unit		
No Load Input Current (V _O On, I _O = 0A)	24V Input Models 48V Input Models 110V Input Models	$V_{IN,DC} = V_{IN,nom}$	I _{IN,no_load}	- - -	25 15 10	- - -	mA mA mA		
Start Up Time		All		-	50	-	mSec		
Input Filter		All	Internal Pi Type						

Output Specifications

Table 3. Output Speci	fications						
Parameter		Condition	Symbol	Min	Тур	Max	Unit
Output Voltage Set -Point		$V_{IN,DC=}V_{IN,nom}$ $I_O=I_{O,max}$, $T_A=25$ °C	±Vο	-	-	±1	%
Line Regulation		V _{IN,DC} =V _{IN,min} to V _{IN,max}	±%V ₀	-	-	0.2	%
Load Regulation	Single Output Dual Output	$I_{O}=I_{O,min}$ to $I_{O,max}$	±%V ₀ ±%V ₀	-		0.5 1.0	%
Output Current	ERM04A18 ERM01B18 ERM01C18 ERM01H18 ERM01BB18 ERM01CC18 ERM04A36 ERM01B36 ERM01C36 ERM01H36 ERM01H36 ERM01H36 ERM01C36 ERM01CC36 ERM01CC36 ERM01CC36 ERM04A110 ERM01B110 ERM01B110 ERM01C110 ERM01H110 ERM01BB110 ERM01BB110	Convection Cooling	I _O	-		4 1.67 1.33 0.833 ±0.833 ±0.667 4 1.67 1.33 0.833 ±0.667 4 1.67 1.33 0.833 ±0.833 ±0.833	A A A A A A A A A A A A A A A A A A A
Load Capacitance	ERM04A18 ERM01B18 ERM01C18 ERM01H18 ERM01BB18 ERM01CC18 ERM04A36 ERM01B36 ERM01C36 ERM01H36 ERM01H36 ERM01H36 ERM01C36 ERM01C10 ERM01B110 ERM01B110 ERM01B110 ERM01B110 ERM01B110 ERM01BB110 ERM01BB110	All	Co	-		6800 1200 750 300 600 ¹ 380 ¹ 6800 1200 750 300 600 ¹ 380 ¹ 6800 1200 750 300 600 ¹ 380 ¹	

Note 1 - For each output

Output Specifications

Table 3. Output Specif	ications Con't						
Parameter		Condition	Symbol	Min	Nom	Max	Unit
Trim Up/Down Range			%V _o	%V _o ±10		%	
Switching Frequency		All	f _{SW}	-	320	-	KHz
Temperature Coefficient		All	±%/°C	-	-	0.02	%/°C
Output Over Current Pro	tection ¹	All	%I _{O,max}	-	150	-	%
Output Short Circuit Prot	ection	All	Hicc	up Mode 0.7	'Hz type, Au	tomatic Re	covery
Output Ripple, pk-pk	5V Output Models 12V Output Models 15V Output Models ±12V Output Models ±15V Output Models	0 to 20MHz bandwidth Measure with a 10uF/25V MLCC	Vo	- - - -	50 100 100 100 100	100 - 100 - 100 -	
	24V Output Models	0 to 20MHz bandwidth Measure with a 4.7uF/50V MLCC	V _o	-	150	-	mV
V _O Dynamic Response	ynamic Response Peak Deviation Recovery Time ²		±%V _O ±%V _{SB}	-	3 -	5 300	% uSec
Output Over Voltage	ERM04A18 ERM01B18 ERM01C18 ERM01H18 ERM01B18 ERM01CC18 ERM04A36 ERM01B36 ERM01C36 ERM01H36 ERM01BB36 ERM01BB36 ERM01CC36 ERM01CC36 ERM04A110 ERM01B110 ERM01C110 ERM01H110 ERM01H110 ERM01BB110 ERM01CC110	All	Vo	- - - - - - - - - - - - - - - - - - -	6.2 15 18 30 ±15 ±18 6.2 15 18 30 ±15 ±18 6.2 15 18 30 ±15 ±18 6.2 15 18 30 ±15 ±18		Vdc

Note 1 - Hiccup mode.

Note 2 - Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.

ERM04A18 Performance Curves

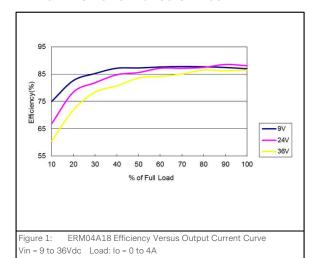
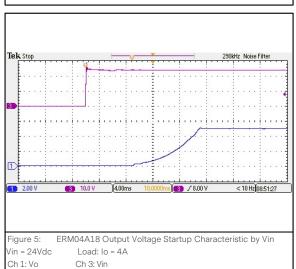



Figure 3: ERM04A18 Ripple and Noise Measurement Vin = 24Vdc Load: Io = 4A Ch 1: Vo

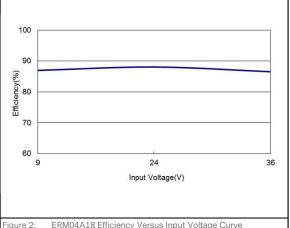


Figure 2: ERM04A18 Efficiency Versus Input Voltage Curve Vin = 9 to 36Vdc Load: Io = 0 to 4A

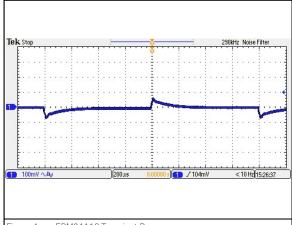
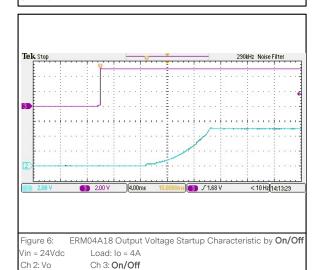



Figure 4: ERM04A18 Transient Response
Vin = 24Vdc Load: Io = 100% to 75% load change
Ch 1: Vo

ERM04A18 Performance Curves

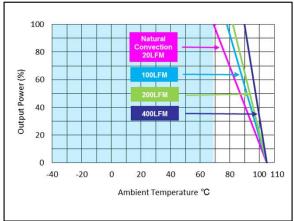


Figure 7: ERM04A18 Derating Output Current vs Ambient Temperature (without heatsink) Vin = 24Vdc

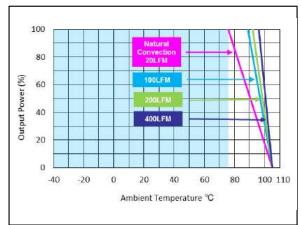


Figure 8: ERM04A18 Derating Output Current vs Ambient
Temperature (with heatsink)
Vin = 24Vdc

ERM01B18 Performance Curves

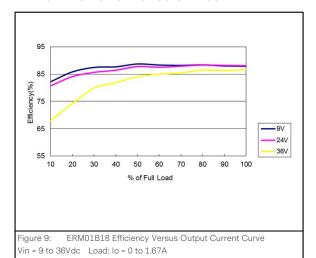
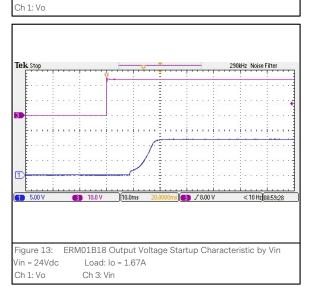



Figure 11: ERM01B18 Ripple and Noise Measurement Vin = 24Vdc Load: Io = 1.67A

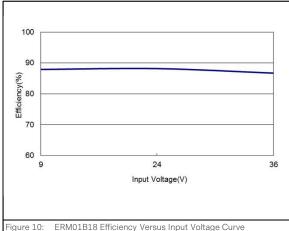


Figure 10: ERM01B18 Efficiency Versus Input Voltage Curve Vin = 9 to 36Vdc Load: lo = 0 to 1.67A

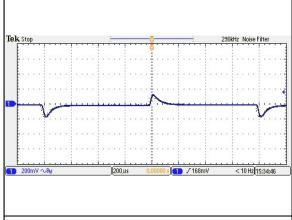
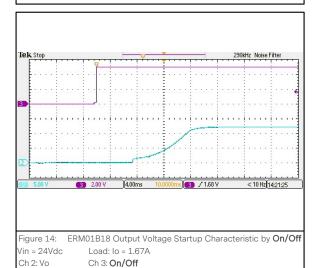
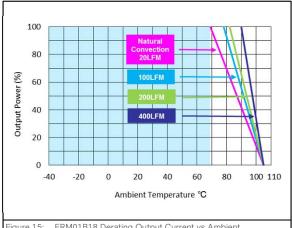
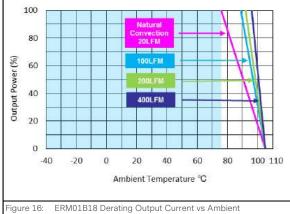
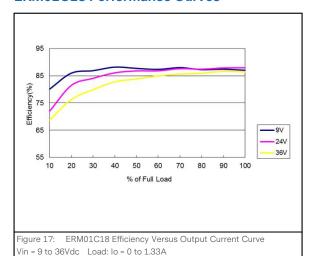
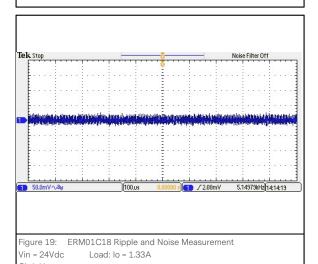



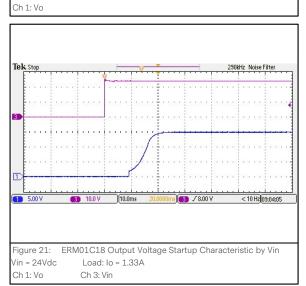
Figure 12: ERM01B18 Transient Response
Vin = 24Vdc Load: Io = 100% to 75% load change
Ch 1: Vo

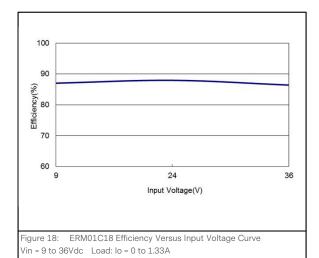
ERM01B18 Performance Curves

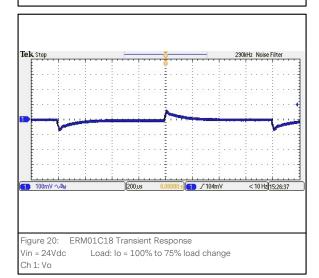



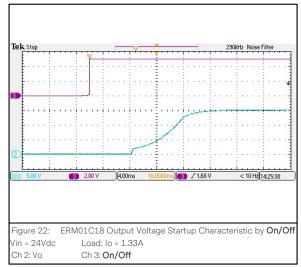

Figure 15: ERM01B18 Derating Output Current vs Ambient Temperature (without heatsink) Vin = 24Vdc




Temperature (with heatsink) Vin = 24Vdc




ERM01C18 Performance Curves



ERM01C18 Performance Curves

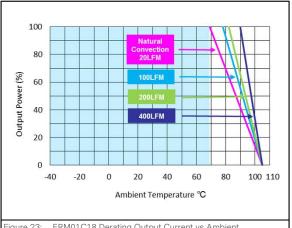


Figure 23: ERM01C18 Derating Output Current vs Ambient Temperature (without heatsink)

Vin = 24Vdc

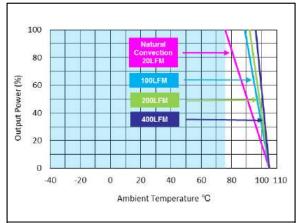


Figure 24: ERM01C18 Derating Output Current vs Ambient Temperature (with heatsink) Vin = 24Vdc

ERM01H18 Performance Curves

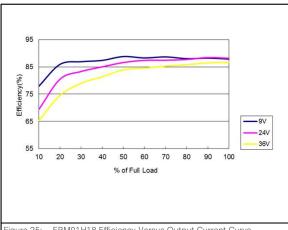


Figure 25: ERM01H18 Efficiency Versus Output Current Curve Vin = 9 to 36Vdc Load: Io = 0 to 0.833A

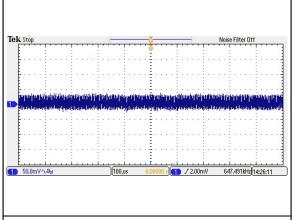
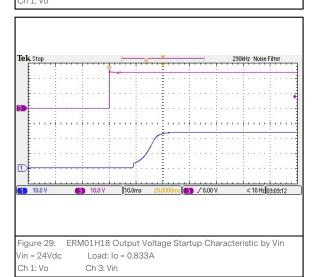
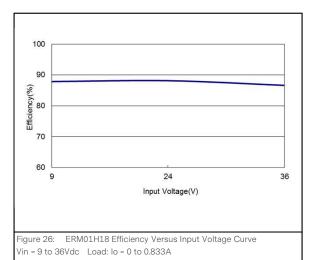
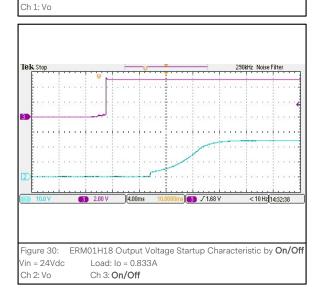





Figure 27: ERM01H18 Ripple and Noise Measurement Vin = 24Vdc Load: Io = 0.833A Ch 1: Vo

Tek Stop 290Htz Noise Filter

ERM01H18 Performance Curves

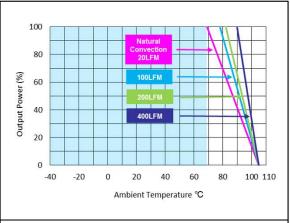


Figure 31: ERM01H18 Derating Output Current vs Ambient Temperature (without heatsink)

Vin = 24Vdc

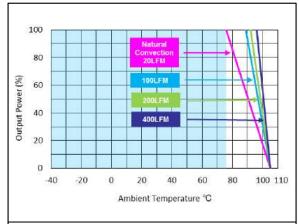
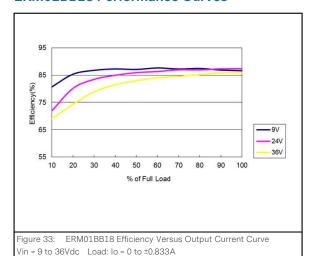
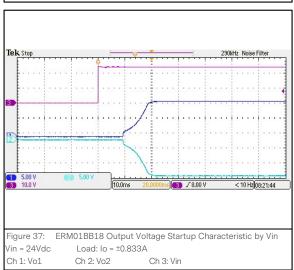
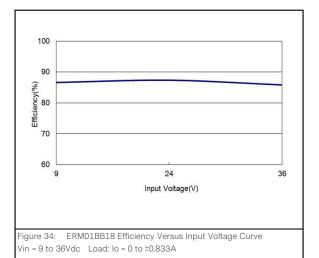
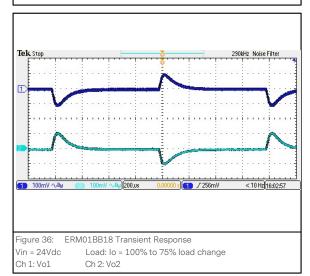
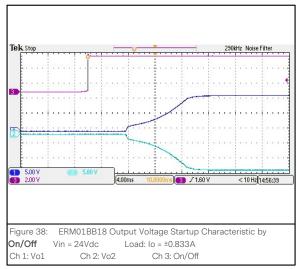



Figure 32: ERM01H18 Derating Output Current vs Ambient Temperature (with heatsink)


Vin = 24Vdc




ERM01BB18 Performance Curves



ERM01BB18 Performance Curves

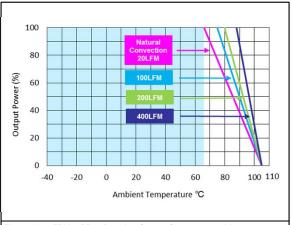
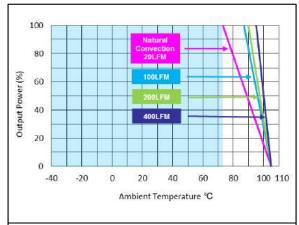
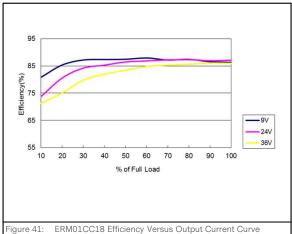
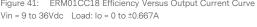
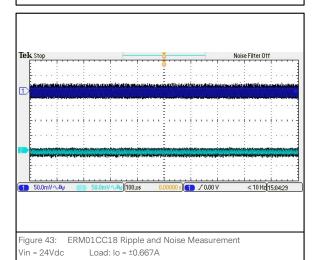
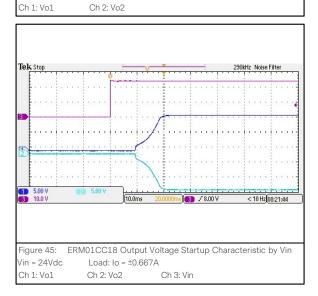
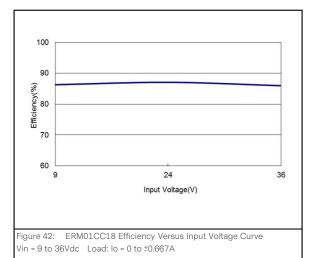


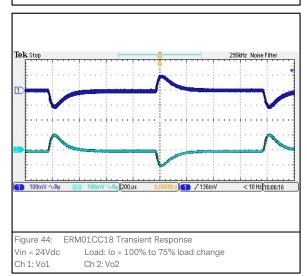
Figure 39: ERM01BB18 Derating Output Current vs Ambient Temperature (without heatsink) Vin = 24Vdc

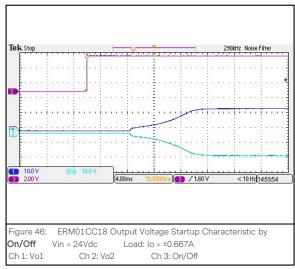





Figure 40: ERM01BB18 Derating Output Current vs Ambient Temperature (with heatsink) Vin = 24Vdc




ERM01CC18 Performance Curves





ERM01CC18 Performance Curves

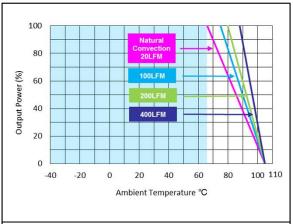


Figure 47: ERM01CC18 Derating Output Current vs Ambient Temperature (without heatsink)

Vin = 24Vdc

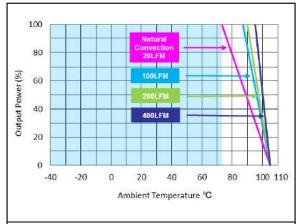


Figure 48: ERM01CC18 Derating Output Current vs Ambient Temperature (with heatsink)

Vin = 24Vdc

ERM04A36 Performance Curves

Figure 49: ERM04A36 Efficiency Versus Output Current Curve Vin = 18 to 75Vdc Load: Io = 0 to 4A

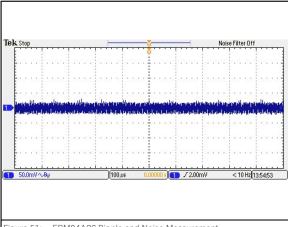
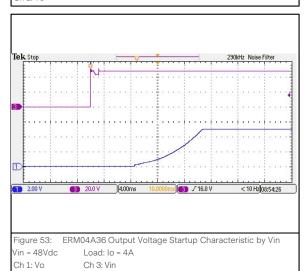
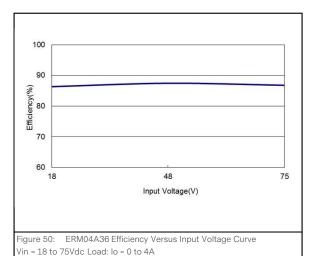
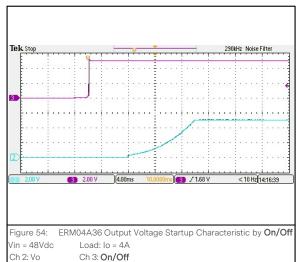





Figure 51: ERM04A36 Ripple and Noise Measurement
Vin = 48Vdc Load: Io = 4A
Ch 1: Vo

ERM04A36 Performance Curves

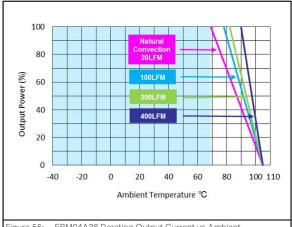


Figure 55: ERM04A36 Derating Output Current vs Ambient Temperature (without heatsink)

Vin = 48Vdc

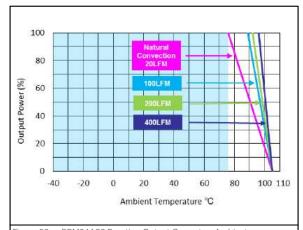
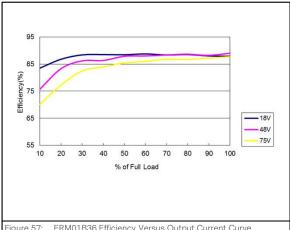
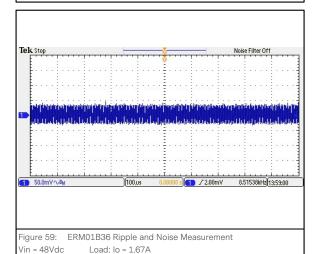
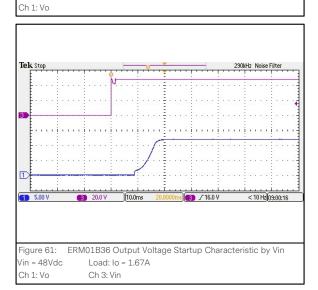
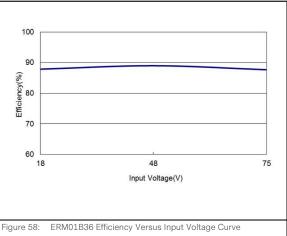
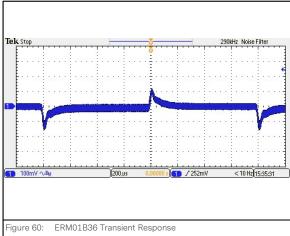


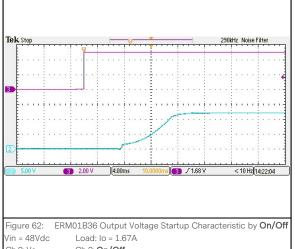
Figure 56: ERM04A36 Derating Output Current vs Ambient Temperature (with heatsink)

Vin = 48Vdc

ERM01B36 Performance Curves


Figure 57: ERM01B36 Efficiency Versus Output Current Curve Vin = 18 to 75Vdc Load: Io = 0 to 1.67A



Vin = 18 to 75Vdc Load: Io = 0 to 1.67A

Vin = 48Vdc Load: Io = 100% to 75% load change Ch 1: Vo

Ch 2: Vo Ch 3: On/Off

ERM01B36 Performance Curves

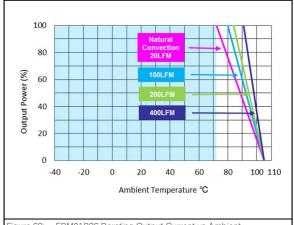


Figure 63: ERM01B36 Derating Output Current vs Ambient Temperature (without heatsink)

Vin = 48Vdc

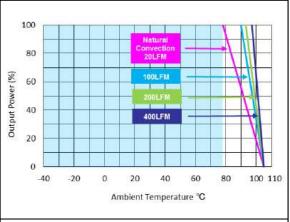


Figure 64: ERM01B36 Derating Output Current vs Ambient

Temperature (with heatsink)

Vin = 48Vdc

ERM01C36 Performance Curves

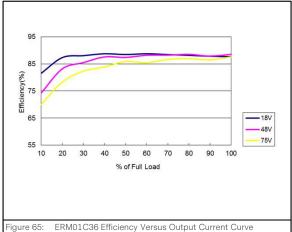


Figure 65: ERM01C36 Efficiency Versus Output Current Curve Vin = 18 to 75Vdc Load: Io = 0 to 1.33A

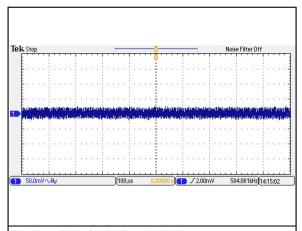
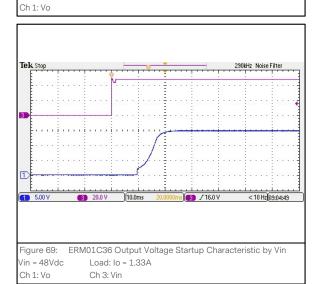
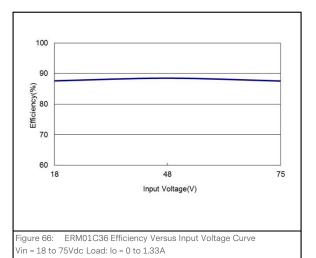
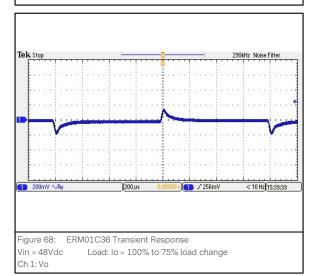
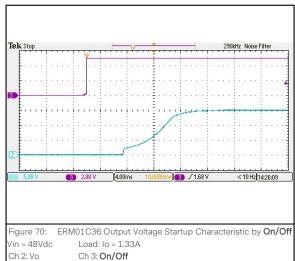






Figure 67: ERM01C36 Ripple and Noise Measurement
Vin = 48Vdc Load: lo = 1.33A

ERM01C36 Performance Curves

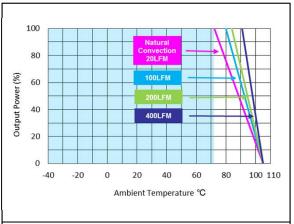


Figure 71: ERM01C36 Derating Output Current vs Ambient Temperature (without heatsink)

Vin = 48Vdc

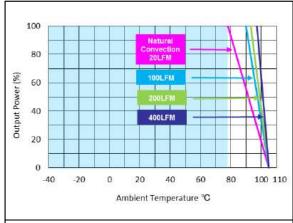
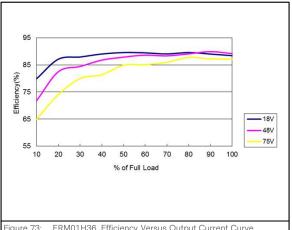
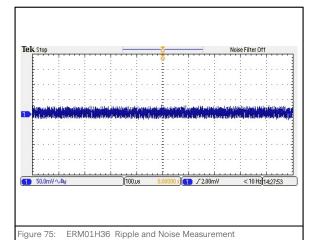
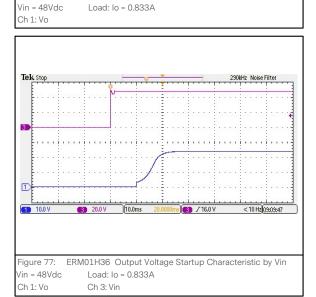
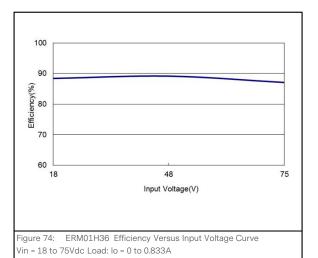
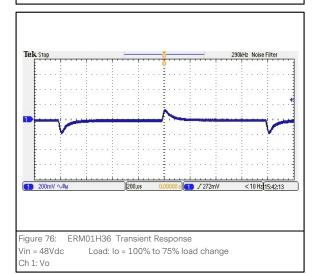
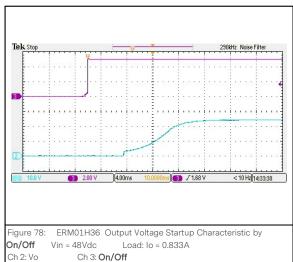


Figure 72: ERM01C36 Derating Output Current vs Ambient Temperature (with heatsink) Vin = 48Vdc

ERM01H36 Performance Curves


Figure 73: ERM01H36 Efficiency Versus Output Current Curve Vin = 18 to 75Vdc Load: Io = 0 to 0.833A

ERM01H36 Performance Curves

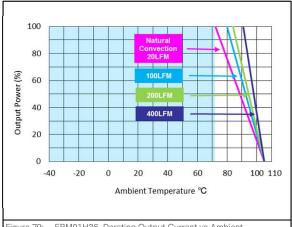


Figure 79: ERM01H36 Derating Output Current vs Ambient Temperature (without heatsink) Vin = 48Vdc

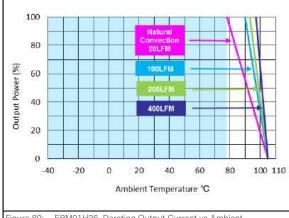


Figure 80: ERM01H36 Derating Output Current vs Ambient
Temperature (with heatsink)
Vin = 48Vdc

ERM01BB36 Performance Curves

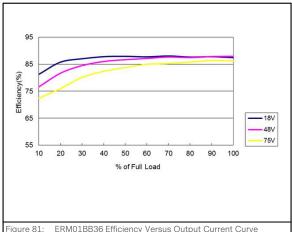
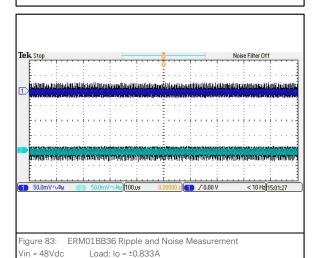
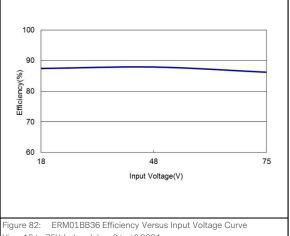
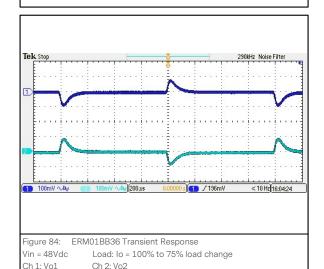
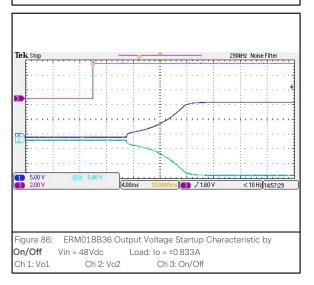


Figure 81: ERM01BB36 Efficiency Versus Output Current Curve Vin = 18 to 75Vdc Load: Io = 0 to ±0.833A


Figure 85: ERM01BB36 Output Voltage Startup Characteristic by Vin Vin = 48Vdc Load: Io = ±0.833A


Ch 3: Vin

Rev. 05.01.17_#1.0

Vin = 18 to 75Vdc Load: lo = 0 to ±0.833A

Ch 1: Vo1

Ch 1: Vo1

Ch 2: Vo2

Ch 2: Vo2

ERM01BB36 Performance Curves

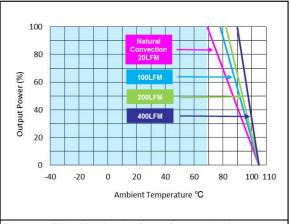


Figure 87: ERM01BB36 Derating Output Current vs Ambient

Temperature (without heatsink)

Vin = 48Vdc

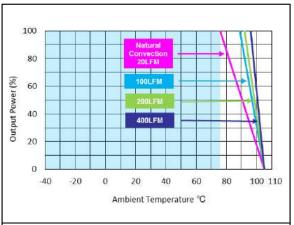
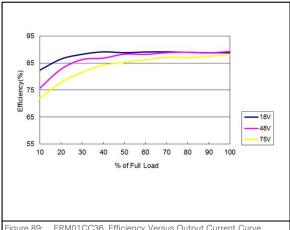
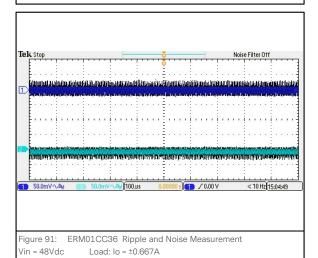
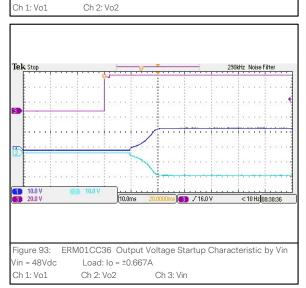
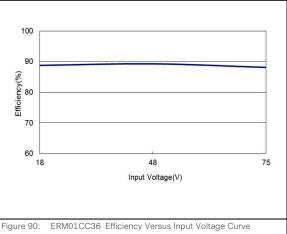


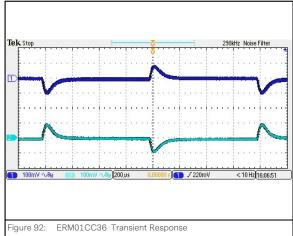
Figure 88: ERM01BB36 Derating Output Current vs Ambient

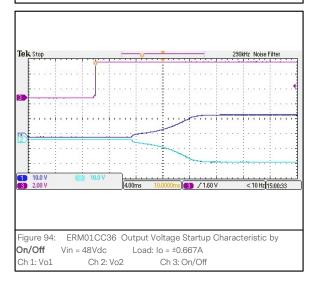
Temperature (with heatsink)

Vin = 48Vdc

ERM01CC36 Performance Curves


Figure 89: ERM01CC36 Efficiency Versus Output Current Curve Vin = 18 to 75Vdc Load: Io = 0 to ±0.667A



Vin = 18 to 75Vdc Load: Io = 0 to ±0.667A

Vin = 48Vdc Load: Io = 100% to 75% load change Ch 1: Vo1 Ch 2: Vo2

ERM01CC36 Performance Curves

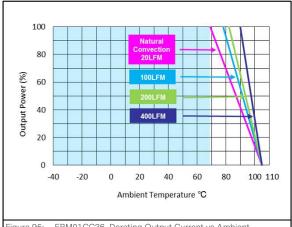
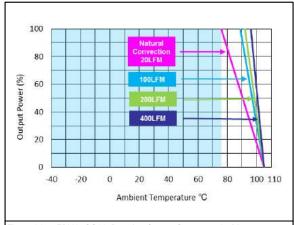
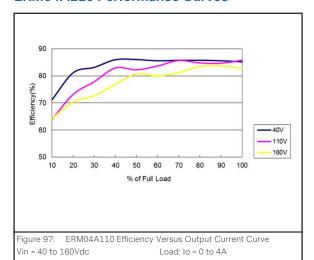


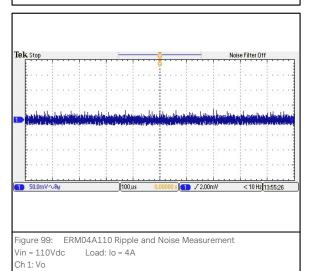
Figure 95: ERM01CC36 Derating Output Current vs Ambient

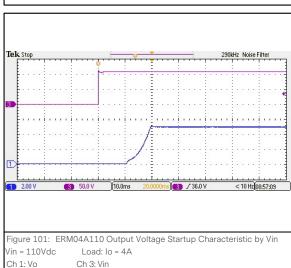
Temperature (without heatsink)

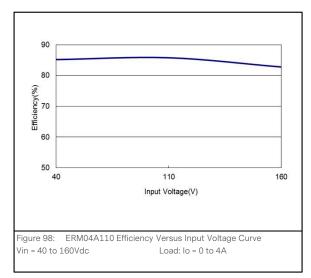
Vin = 48Vdc

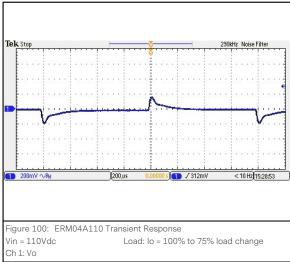


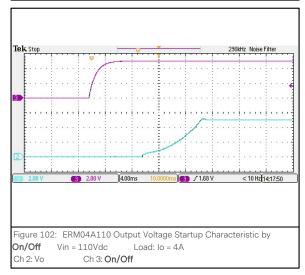

Figure 96: ERM01CC36 Derating Output Current vs Ambient

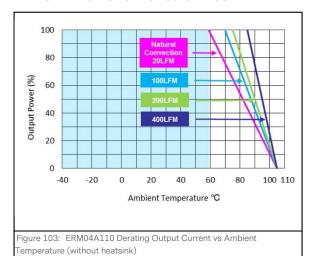

Temperature (with heatsink)


Vin = 48Vdc

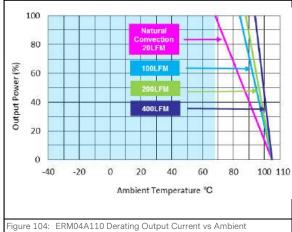
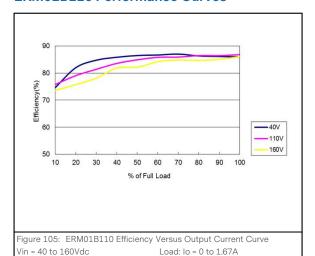


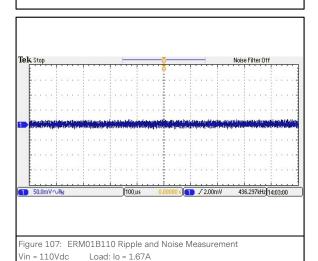

ERM04A110 Performance Curves

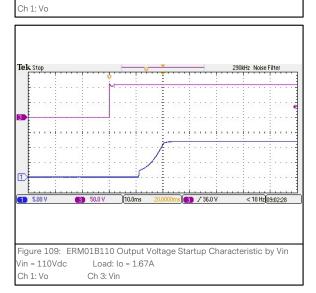


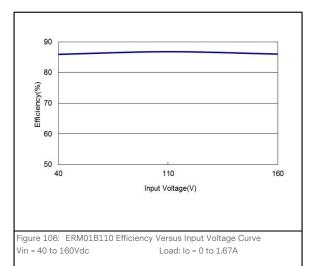


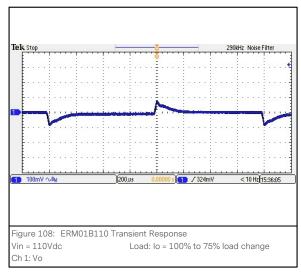
ERM04A110 Performance Curves

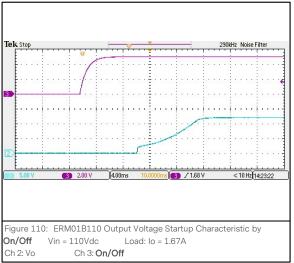




Figure 104: ERM04A110 Derating Output Current vs Ambient
Temperature (with heatsink)
Vin = 110Vdc




Vin = 110Vdc


ERM01B110 Performance Curves



ERM01B110 Performance Curves

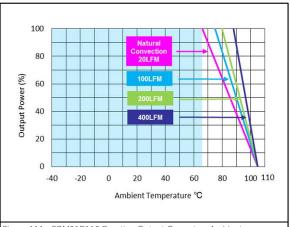
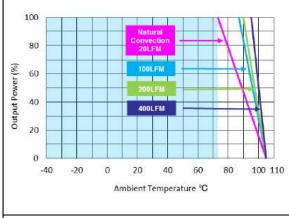
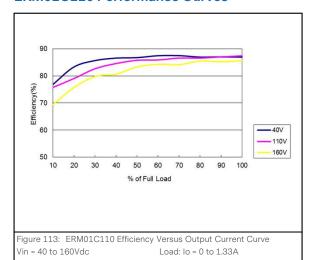
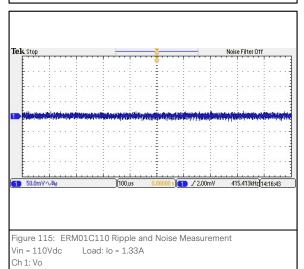
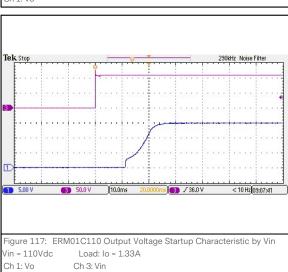
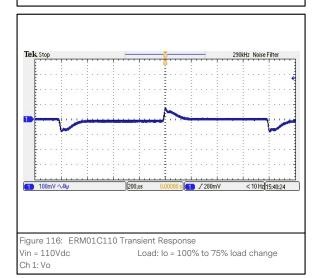
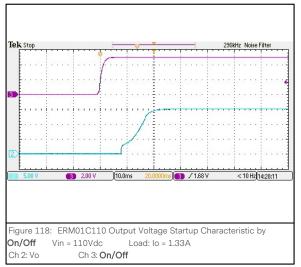


Figure 111: ERM01B110 Derating Output Current vs Ambient Temperature (without heatsink) Vin = 110Vdc


Figure 112: ERM01B110 Derating Output Current vs Ambient Temperature (with heatsink) Vin = 110Vdc


ERM01C110 Performance Curves



ERM01C110 Performance Curves

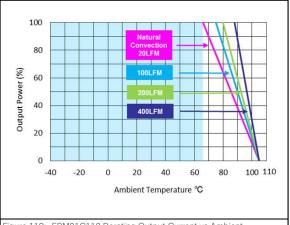
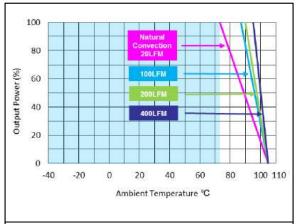
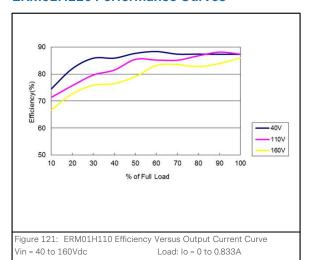
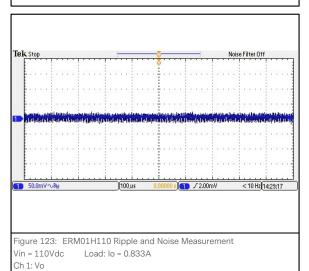
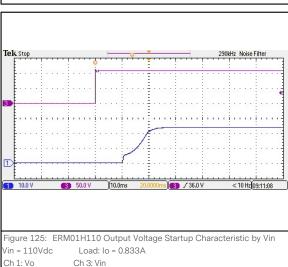
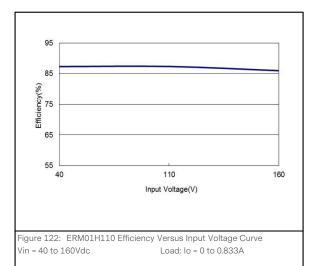
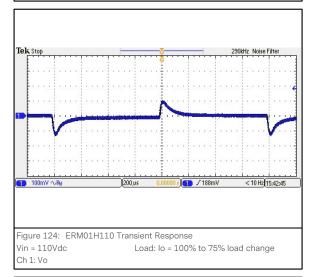


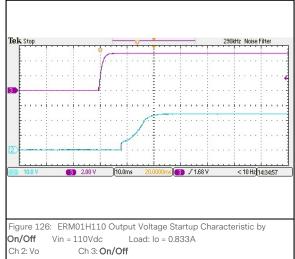
Figure 119: ERM01C110 Derating Output Current vs Ambient Temperature (without heatsink) Vin = 110Vdc


Figure 120: ERM01C110 Derating Output Current vs Ambient Temperature (with heatsink) Vin = 110Vdc




ERM01H110 Performance Curves



ERM01H110 Performance Curves

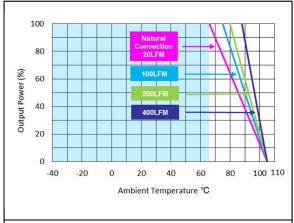
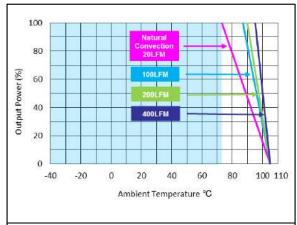
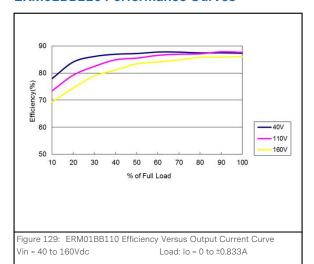
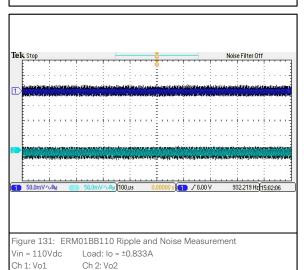
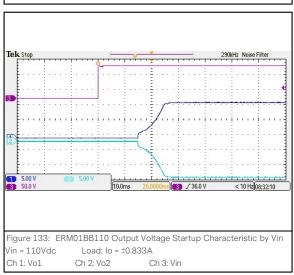
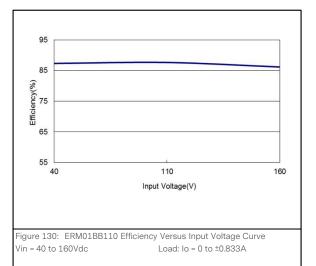
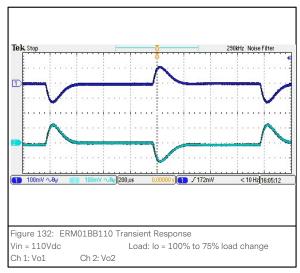


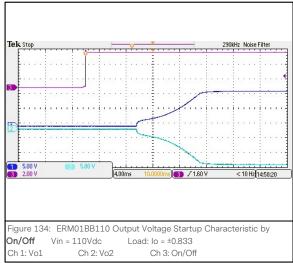
Figure 127: ERM01H110 Derating Output Current vs Ambient Temperature (without heatsink) Vin = 110Vdc


Figure 128: ERM01H110 Derating Output Current vs Ambient Temperature (with heatsink) Vin = 110Vdc




ERM01BB110 Performance Curves



ERM01BB110 Performance Curves

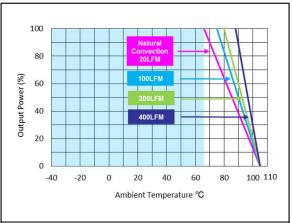
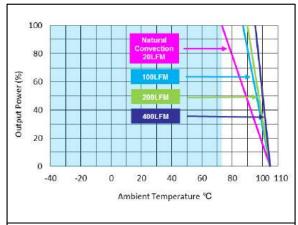
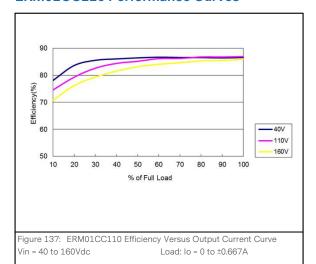
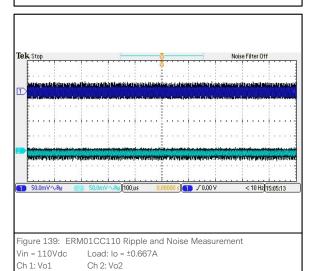
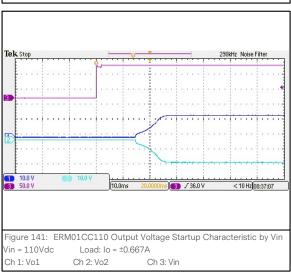
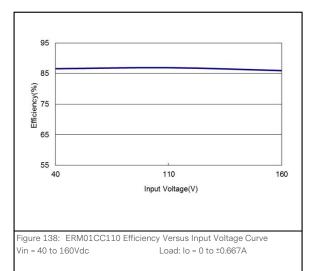
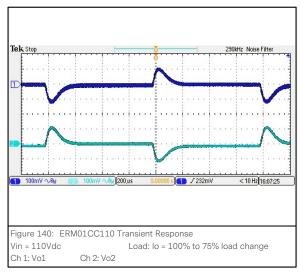


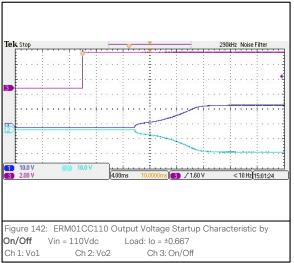
Figure 135: ERM01BB110 Derating Output Current vs Ambient Temperature (without heatsink) Vin = 110Vdc


Figure 136: ERM01BB110 Derating Output Current vs Ambient Temperature (with heatsink) Vin = 110Vdc




ERM01CC110 Performance Curves



ERM01CC110 Performance Curves

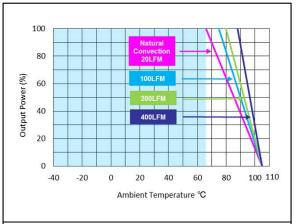
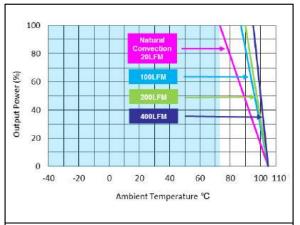
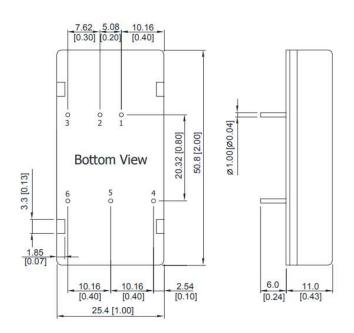
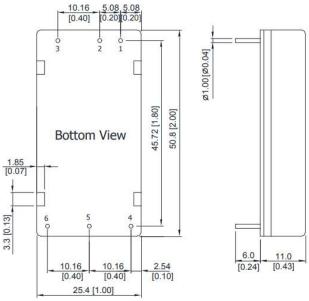


Figure 143: ERM01CC110 Derating Output Current vs Ambient Temperature (without heatsink) Vin = 110Vdc


Figure 144: ERM01CC110 Derating Output Current vs Ambient Temperature (with heatsink) Vin = 110Vdc

MECHANICAL SPECIFICATIONS

Mechanical Outlines - Without Heatsink

Pin Con	nectors - ERMxxxxx Mo	dels
Pin	Single Output	Dual Output
1	+Vin	+Vin
2	-Vin	-Vin
3	Remote On/Off	Remote On/Off
4	+Vout	+Vout
5	Trim	Common
6	-Vout	-Vout

T: 11.0 mm (0.43 inch) for 24 V Output Models T: 10.2 mm (0.40 inch) for Other Output Models

Pin Con	nectors - ERMxxxxxB M	odels
Pin	Single Output	Dual Output
1	+Vin	+Vin
2	-Vin	-Vin
3	Remote On/Off	Remote On/Off
4	+Vout	+Vout
5	-Vout	Common
6	Trim	-Vout

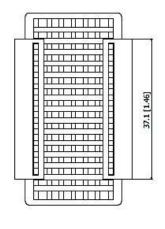
Note:

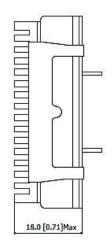
1.All dimensions in mm (inches)

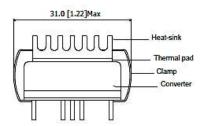
2.Tolerance: X.X \pm 0.75 (X.XX \pm 0.03)

 $\begin{array}{c} \text{X.XX} \!\pm\! 0.25 \, (\, \text{X.XXX} \!\pm\! 0.01) \\ \text{3.Pin diameter} \ \ 1.0 \!\pm\! 0.05 \, (0.04 \!\pm\! 0.002) \end{array}$

Physical Characteristics


Case Size	50.8x25.4x11.0 mm (2.0x1.0x0.43 inches)
Case Material	Red Copper, Powder Coating
Base Material	FR4 PCB (flammability to UL 94V-0 rated)
Insulated Frame Material	Non-Conductive Black Plastic (flammability to UL 94V-0 rated)
Pin Material	Tinned Copper
Potting Material	Epoxy (flammability to UL 94V-0 rated)
Weight	40.5g


Note: To order the converter with heatsink, please add a suffix -HS (ERMO0B110-HS) to order code.



MECHANICAL SPECIFICATIONS

Mechanical Outlines - With Heatsink

Note: 1.All dimensions in mm (inches) 2.Tolerance: X.X \pm 0.75 (X.XX \pm 0.03) X.XX \pm 0.25 (X.XXX \pm 0.01) 3.Pin diameter 1.0 \pm 0.05 (0.04 \pm 0.002)

Physical Characteristics

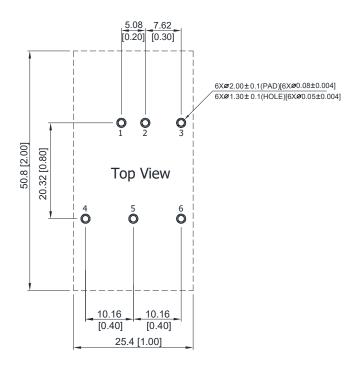
Heatsink Size	37.1x31.0x18.0 mm (1.46x1.22x0.71 inches)
Heatsink Material	Aluminum
Finish	Black Anodized coating
Weight	9.0g

The advantages of adding a heatsink are:

1. To improve heat dissipation and increase the stability and reliability of the DC/DC converters at high operating temperatures.

Rev. 05.01.17_#1.0

2. To increase Operating temperature of the DC/DC converter, please refer to Derating Curve.


Note:

- 1. All specifications are subject to change without notice. Mechanical drawings are for reference only.
- 2. Warranty: 3 years
- 3. Label and logo appearance may vary from what is shown on mechanical drawings.

MECHANICAL SPECIFICATIONS

Recommended Pad Layout

EMC Immunity

ERM 20W series power supply is designed to meet the following EMC immunity specifications.

Table 4. EMC Spec	ifications		
Parameter		Standards & Level	Performance
General	Compliance with EN501	121-3-2 Railway Applications	
EMI	Conduction	EN55032, EN55022, FCC part15	Class A
	EN55024		
	ESD	EN61000-4-2 Air \pm 8kV, Contact \pm 6kV	Criteria A
	Radiated immunity	EN61000-4-3 10V/m	Criteria A
EMS	Fast transient ¹	EN61000-4-4 ±2KV	Criteria A
	Surge ¹	EN61000-4-5 ±2KV	Criteria A
	Conducted immunity	EN61000-4-6 10Vrms	Criteria A
	PFMF	EN61000-4-8 3A/M	Criteria A

Note1 - To meet EN61000-4-4 & EN61000-4-5, an external capacitor across the input pins is required. Suggested capacitor: 24V input models: CHEMI-CON KY Series 390µF/63V. 48V input models: CHEMI-CON KY Series 330µF/100V. 110V input models: CHEMI-CON KXJ Series 390µF/200V.

Safety Certifications

The ERM 20W series power supply is intended for inclusion in other equipment and the installer must ensure that it is in compliance with all the requirements of the end application. This product is only for inclusion by professional installers within other equipment and must not be operated as a stand alone product.

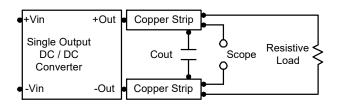
Table 5. Safety Certifications for ERM 20W series power supply system						
Document	Description					
cUL/UL 60950-1 (UL certificate)	US Requirements					
IEC/EN 60950-1 (CB-report)	European Requirements (All CENELEC Countries)					
cUL/UL 62368-1 (UL certificate)	US Requirements					
IEC/EN 62368-1 (CB-report)	European Requirements (All CENELEC Countries)					
CE mark						

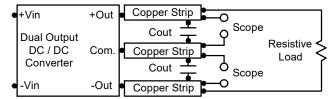
Operating Temperature

Table 6. Operating Temperature							
		Mi	in		М	ax	
Parameter	Model / Condition Without With Heatsink Heatsin			Without With Heatsink Heatsink		Unit	
	ERM01B36 ERM01C36 ERM01H36	-40				78	°C
Operating Temperature Range Natural Convection ¹ Nominal Vin, Load 100% Inom.	ERM04A18 ERM01B18 ERM01C18 ERM01H18 ERM04A36 ERM01BB36 ERM01CC36			69	76	°C	
(for Power Derating see relative Derating Curves)	ERM01BB18 ERM01CC18 ERM01B110 ERM01C110 ERM01H110 ERM01BB110 ERM01CC110			66	73	°C	
	ERM04A110				59	68	°C
	Natural Convection	12.1		9.8	-		°C/W
T	100LFM	9.2		5.4	-		°C/W
Thermal Impedance	200LFM	7.8		4.5		-	°C/W
	400LFM	5.2		3.0	- °C/		
Cooling Test		Compliance	to IEC	C/EN600)68-2-1		
Dry Heat		Compliance	to IEC	C/EN600)68-2-2		
Damp Heat		Compliance	to IEC	/EN600	68-2-30		
Shock & Vibrate Test		Compliand	ce to IE	EC/EN 6	31373		
RFI		Six-Sided S	Shielde	ed, Meta	l Case		
Lead Temperature (1.5mm from case for 10Sec.)			-			260	°C

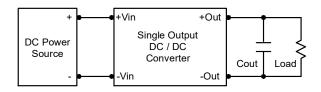
Note1 - The "natural convection" is about 20LFM but is not equal to still air (0 LFM).

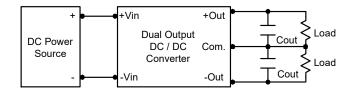
MTBF and Reliability


The MTBF of ERM 20W series of DC/DC converters has been calculated using MIL-HDBK 217F NOTICE2, Operating Temperature 25 °C, Ground Benign.

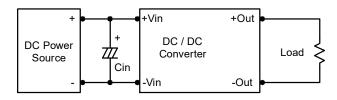

Model	MTBF	Unit
ERM04A18	873,800	
ERM01B18	1,180,000	
ERM01C18	1,179,000	
ERM01H18	1,179,000	
ERM01BB18	1,042,000	
ERM01CC18	1,041,000	
ERM04A36	873,000	
ERM01B36	1,290,000	
ERM01C36	1,290,000	Hours
ERM01H36	1,289,000	nouis
ERM01BB36	1,142,000	
ERM01CC36	1,142,000	
ERM04A110	665,100	
ERM01B110	927,700	
ERM01C110	939,300	
ERM01H110	1,051,000	
ERM01BB110	1,041,000	
ERM01CC110	1,041,000	

Peak-to-Peak Output Noise Measurement Test


Use a $1\mu F$ ceramic capacitor and a $10\mu F$ tantalum capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.



Output Ripple Reduction


A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 4.7uF capacitors at the output.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 KHz) capacitor of a 4.7μ F for the 24V input devices, a 2.2μ F for the 48V devices and a 1μ F for the 110V devices.

Output Over Current Protection

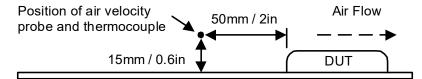
To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Overvoltage Protection

The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals.

The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in Table 3.

Maximum Capacitive Load

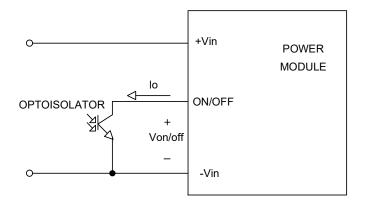

The ERM 20W series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C.

Rev. 05.01.17_#1.0

The derating curves are determined from measurements obtained in a test setup.


Remote ON/OFF

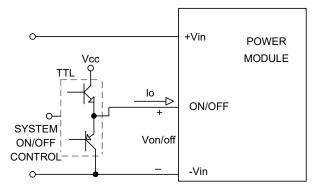
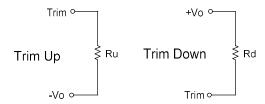

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 3) during a logic low is -100µA.

Table 7. Remote ON/OFF Control								
Parameter	Condition	Symbol	Min	Тур	Max	Unit		
Converter On	3.5V ~ 12V or Open Circuit							
Converter Off	0V ~ 1.2V or Short Circuit							
Control Input Current (on)	Vctrl = 5.0V			0.5		mA		
Control Input Current (off)	Vctrl = 0V			-0.5		mA		
Control Common	Refer	renced to Negative Inp	out					
Standby Input Current	Nominal Vin			2.5		mA		

Remote On/Off Implementation

The positive logic remote ON/OFF control circuit is included. Turns the module ON during logic High on the ON/Off pin and turns OFF during logic Low. The ON/OFF input signal (Von/off) that referenced to GND. If not using the remote on/off feature, please open circuit between on/off pin and -Vin pin to turn the module on.

Isolated-Closure Remote ON/OFF


Level Control Using TTL Output

Application Notes

External Output Trimming

The ERM 20W series Output can be externally trimmed by using the method shown below.

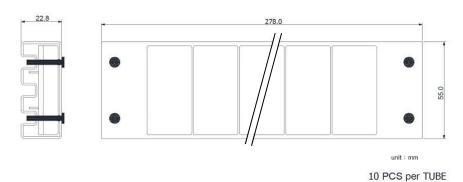
5V Output Models Trim Table:

Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Vdc
Rd=	156.81	70.69	41.99	27.64	19.03	13.29	9.18	6.11	3.72	1.80	KOhm
Trim up	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox1.01	Vox1.02	Vox1.03	Vox1.04	Vox1.05	Vox1.06	Vox1.07	Vox1.08	Vox1.09	Vox1.10	Vdc
Ru=	119.77	53.70	31.67	20.66	14.05	9.65	6.50	4.14	2.31	0.84	KOhm

12V Output Models Trim Table:

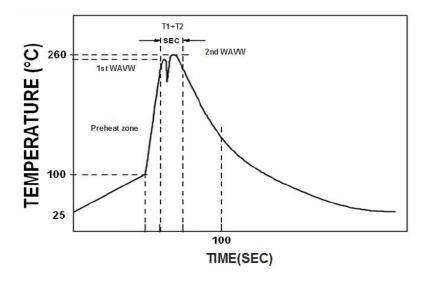
Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Vdc
Rd=	419.81	187.68	110.30	71.61	48.40	32.93	21.87	13.58	7.13	1.98	KOhm
Trim up	1	2	3	4	5	6	7	8	0	10	%
	11 101										
Vout=	Vox1.01	Vox1.02	Vox1.03	Vox1.04	Vox1.05	Vox1.06	Vox1.07	Vox1.08	Vox1.09	Vox1.10	Vdc

15V Output Models Trim Table:


Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Vdc
Rd=	602.92	269.91	158.91	103.41	70.10	47.90	32.05	20.15	10.90	3.50	KOhm
Trim up					_			_	_		0/
Trimi up	1	2	3	4	5	6	/	8	9	10	%
Vout=	Vox1.01	Vox1.02	Vox1.03	Vox1.04	5 Vox1.05	6 Vox1.06	/ Vox1.07	8 Vox1.08	Vox1.09	10 Vox1.10	% Vdc

24V Output Models Trim Table:

Trim down	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox0.99	Vox0.98	Vox0.97	Vox0.96	Vox0.95	Vox0.94	Vox0.93	Vox0.92	Vox0.91	Vox0.90	Vdc
Rd=	598.97	267.93	157.59	102.42	69.31	47.25	31.48	19.66	10.46	3.11	KOhm
Trim up	1	2	3	4	5	6	7	8	9	10	%
Vout=	Vox1.01	Vox1.02	Vox1.03	Vox1.04	Vox1.05	Vox1.06	Vox1.07	Vox1.08	Vox1.09	Vox1.10	Vdc
Ru=	486.83	217.87	128.21	83.38	56.49	38.56	25.75	16.14	8.67	2.69	KOhm



Packaging Information

Soldering and Reflow Considerations

Lead free wave solder profile for ERM 20W Series

Zone	Reference Parameter		
Preheat zone	Rise temp speed: 3°C/sec max.		
Freneat Zone	Preheat temp: 100~130°C		
Actual heating	Peak temp: 250~260°C		
Actual fleating	Peak time(T1+T2): 4~6 sec		

Reference Solder: Sn-Ag-Cu: Sn-Cu: Sn-Ag Hand Welding: Soldering iron: Power 60W Welding Time: 2~4 sec Temp.: 380~400 °C

RECORD OF REVISION AND CHANGES

1.0 Date		Description	Originators	
1.0	05.01.2017	First Issue	E. Bai	

For international contact information, visit advancedenergy.com.

powersales@aei.com(Sales Support) productsupport.ep@aei.com(Technical Support) +1 888 412 7832

ABOUT ADVANCED ENERGY

Advanced Energy (AE) has devoted more than three decades to perfecting power for its global customers. AE designs and manufactures highly engineered, precision power conversion, measurement and control solutions for mission-critical applications and processes.

Our products enable customer innovation in complex applications for a wide range of industries including semiconductor equipment, industrial, manufacturing, telecommunications, data center computing, and medical. With deep applications know-how and responsive service and support across the globe, we build collaborative partnerships to meet rapid technological developments, propel growth for our customers, and innovate the future of power.

PRECISION | POWER | PERFORMANCE

Specifications are subject to change without notice. Not responsible for errors or omissions. ©2020 Advanced Energy Industries, Inc. All rights reserved. Advanced Energy®, and AE® are U.S. trademarks of Advanced Energy Industries, Inc.